OPERATING INSTRUCTIONS

LMS400 LASER MEASUREMENT SENSORS

Software version described

Software/tool	Function	Status
LMS400-XXXX	Firmware	V 1.20 or higher
Device description	Device specific software	V 01.01.20 or higher
LMS400-XXXX (jar file)	module for SOPAS ET	
SOPAS ET	Configuration software	V 03.00 or higher

The LMS400 laser measurement sensor is intended exclusively for use in industrial environments. When used in residential areas it can cause interferences.

Copyright

Copyright © 2013 - 2016 SICK AG Waldkirch Erwin-Sick-Str. 1 79183 Waldkirch Germany

Trademarks

Windows 98, NT 4.0, 2000, XP, Vista, 7, 8, 10 und Internet Explorer are registered trademarks of Microsoft Corporation in the USA and other countries.

Getting started ...

- Delivery scope
 - Section 3.1 "Delivery" on page 19
- WARNING!
 - Chapter 2 "For your safety" on page 13
- Mounting the device
 - Chapter 4 "Mounting" on page 55
- Connecting the device electrically
 - Chapter 5 "Electrical installation" on page 58
- Familiarisation with the device and its functions in general
 - Chapter 3 "Product description" on page 19
 - Chapter 3.8 "Master/slave operation" on page 34
 - Chapter 10 "Technical specifications" on page 76
- Setting up of the device for measurement
 - Chapter 7 "Configuration (parameterisation)" on page 65
- Help with resolving problems
 - Chapter 9 "Troubleshooting" on page 74
- Where is what?
 - "Table of contents" on page 5

Installation steps (overview)

- 1. Check delivery for completeness.
- 2. Connect LMS400 to voltage supply.
- 3. Switch on the PC and start Windows (minimum requirements: Windows 98).
- 4. Connect PC to LMS400 using the Ethernet interface.
- Install SOPAS ET configuration software on PC. To do so, download SOPAS ET from the Internet at www.sick.com/sopas.
- 6. Start the SOPAS ET configuration software user interface and load the LMS400 device driver in the device catalogue.
- Click SEARCH SETTINGS, select LMS4xx device family, and choose the IP address of the device (default = 192.168.0.1).
- 8. From the DEVICE menu select the LOGIN DEVICE command and log in to the device as AUTHORIZED CLIENT using the password "client".

Do not switch off the voltage supply during configuration!

Switching off the voltage supply during configuration causes all parameters already configured to be lost.

- 9. Configure the LMS400 with the aid of the parameters on the device pages of SOPAS ET for the desired application. The parameter values are transferred to the RAM in the LMS400 so that you can check their effect immediately.
- 10. Check the measurement area of the sensor (PROJECT TREE, LMS400-XX00, MONITOR, SCAN VIEW).

Recommendation

- Use the graphic scan view in SOPAS ET to verify the measured values generated and to verify the measurement area online. During this process, note that the monitor cannot display the data in real-time and therefore does not display all measured values.
- 11. Test the configuration under real conditions.
- 12. If necessary, correct and optimise the parameters set.
- 13. Save parameter set permanently in the LMS400 (menu LMS400_XX00, PARAMETER, SAVE PERMANENT). In this way it is saved in EEPROM and is available after a power failure.
- 14. Save parameter record as a configuration file (extension "*.sdv" respectively "*.sopas") (menu PROJECT, SAVE PROJECT As...).
- 15. The LMS400 is ready for use with the application-specific configuration. Now you are able to send measured values telegrams to the system and poll measured values.

Table of contents

1	About this document	. 11
1.1	Function of this document	. 11
1.2	Target group	. 11
1.3	Scope	. 11
1.4	Depth of information	. 11
1.5	Symbology used	. 12
2	For your safety	13
2.1	Authorized personnel	. 13
2.2	Applications of the device	. 13
2.3	Correct use	. 14
2.4	General safety notes and protective measures	. 14
2.5	Quick stop and Quick restart	. 18
2.6	Environmental protection	. 18
3	Product description	. 19
3.1	Delivery	. 19
3.2	Special features of the LMS400	. 19
3.3	Planning	.20
3.4	Operating principle of the LMS400	. 22
3.5	Measured value output	.23
3.6	Measuring accuracy of the LMS400	.26
3.7	Filtering measured values	.29
3.8	Master/slave operation	.34
3.9	Level Control	. 35
3.10	Configurable functions for Level Control	. 39
3.11	Interface specification	.49
3.12	Data communication using telegrams	.50
3.13	Status indicators	. 54
4	Mounting	. 55
4.1	Mounting requirements	. 55
4.2	Overview of the mounting steps	.55
4.3	Preparations for mounting	.55
4.4	Mounting with mounting kit No. 2030421	. 56
4.5	Dismantling the sensor	.57
5	Electrical installation	. 58
5.1	Overview of the installation steps	.58
5.2	Electrical connections and cables	. 58
5.3	Pin assignment of the connections	. 59
5.4	Connection via connection module or plug cover	.62
5.5	Performing the electrical installation	.63
6	Commissioning	. 64
7	Configuration (parameterisation)	. 65
7.1	Configuration for measured value output	.65
7.2	Configuration and adjustment for Level Control	.67
8	Iviaintenance	. 72
8.1	Namenance during operation	. 72
8.2	Disposal	.73
8.3	Replacement of a sensor	.73

9	Troubleshooting	74
9.1	In the event of faults or errors	74
9.2	Error on beam generation	74
9.3	Detailed error analysis	74
10	Technical specifications	76
10.1	Data sheet LMS400 laser measurement sensor	76
10.2	Dimensional drawings	78
11	Annex	80
11.1	Overview of the annexes	80
11.2	Overview of the telegrams	81
11.3	Reference measured value telegrams	84
11.4	Reference configuration telegrams for the basic measurement parameters .	90
11.5	Reference general configuration telegrams	96
11.6	Configuration telegrams for master/slave operation	105
11.7	Reference configuration telegrams for filter setting	106
11.8	Reference configuration telegrams for triggering	109
11.9	Configuration telegrams for the outputs	114
11.10	Configuration telegrams for the host interface	115
11.11	Configuration telegrams for the Ethernet interface	124
11.12	Reference status log telegrams	129
11.13	Error codes	132
11.14	Telegrams for Level Control	132
11.15	Ordering information	139
11.16	EU Declaration of Conformity	139
11.17	Glossary	140

Abbreviations

- BCC Block Character Check
- **CAN** Controller Area Network = standardised fieldbus system with message-based protocol for exchanging data
- CS Checksum
- **EEPROM** Electrically Erasable Programmable Read-only Memory
 - FSI Fast Serial Interface = SICK communication interface
 - HTML Hypertext Markup Language = page description language in the Internet
 - LED Light Emitting Diode
 - LMS SICK AG laser measurement sensor
 - **RAM** Random Access Memory = volatile memory with direct access
 - **RIS** Remission Information System
 - ROM Read-only Memory (permanent)
 - **SDD** SOPAS Device Driver file
- **SOPAS ET** SICK OPEN PORTAL for APPLICATION and SYSTEMS Engineering Tool = configuration software for the configuration of the LMS400

Tables

Tab. 1:	Variants of the LMS400 laser measurement sensor	.11
Tab. 2:	Laser warnings	.15
Tab. 3:	Statistical measuring error	.27
Tab. 4:	Typical remission values for frequently used materials	
	(source: Kodak standard)	.28
Tab. 5:	Possible measured value quality	.29
Tab. 6:	Measured values with edge filter	.30
Tab. 7:	Example median filter: Unfiltered measured values	.30
Tab. 8:	Example median filter: Determining the median for scan 2	.30
Tab. 9:	Measured values with median filter	.31
Tab. 10:	Measured data output delay due to the median filter	.31
Tab. 11:	Measured values with an range filter from 1000 to 2000 mm (39 to 79 in)	.32
Tab. 12:	Measurement values with mathematical filter for five scans	.32
Tab. 13:	Measured data output delay due to mean filter	.33
Tab. 14:	Frame for the telegrams on the aux interface or the host interface	.51
Tab. 15:	Frame for the telegrams on the Ethernet interface	.51
Tab. 16:	Sequence during configuration using telegrams	.54
Tab. 17:	Meaning of the LEDs	.54
Tab. 18:	Function of the electric connections of the LMS400	.58
Tab. 19:	Pin assignment of the "Ethernet" connection (8-pin RJ45 female connector)	.59
Tab. 20:	Pin assignment of the "System" connection (8-pin RJ45 female connector)	.59
Tab. 21:	Pin assignment of the "I/O" connection (D-Sub-HD female connector)	.60
Tab. 22:	Pin assignment of the "Serial" connection (D-Sub-HD male connector)	.61
Tab. 23:	Passwords	.65
Tab. 24:	Data sheet LMS400 laser measurement sensor	.76
Tab. 25:	Overview of the measured value and configuration telegrams	.82
Tab. 26:	Variable types	.83
Tab. 27:	Syntax error or logical errors	.83
Tab. 28:	Error codes 1	132

Figures

Fig. 1:	Laser output aperture	17
Fig. 2:	Laser warning labels on the LMS400	17
Fig. 3:	Operating principle of the LMS400 laser measurement sensor	
Fig. 4:	Example for mounting above a conveyor system	21
Fig. 5:	Continuous measured value output	23
Fig. 6:	Triggered measured value output with gate	24
Fig. 7:	Measured value output with laser control	25
Fig. 8:	Example for the phase configuration of a master/slave system	35
Fig. 9:	LMS400 above a conveyor system	35
Fig. 10:	Working area of the application	
Fig. 11:	Application example	
Fig. 12:	Example for the evaluation of the columns	37
Fig. 13:	Density of the measured points	
Fig. 14:	Shadows during measurement	
Fig. 15:	Zero point of the LMS400 as delivered	
Fig. 16:	Global zero point for the application	
Fig. 17:	Measurement area	40
Fig. 18:	Equidistant column division	41
Fig. 19:	User-defined column division	41
Fig. 20:	Quality of the column result	42
Fig. 21:	External gate	
Fig. 22:	Distance delay for the gate	44
Fig. 23:	Internal gate	
Fig. 24:	Interval	
Fig. 25:	Use of methods for querying measured values	52
Fig. 26:	Use of variables for configuration	53
Fig. 27:	Used of methods for configuration	53
Fig. 28:	Mounting kit for LMS400	56
Fig. 29:	Position of the electric connections of the LMS400	58
Fig. 30:	Connection diagram for digital input	60
Fig. 31:	Connection diagram for encoder inputs	60
Fig. 32:	Connection of RS-232 or RS-422 interface	61
Fig. 33:	Example of a plug cover	62
Fig. 34:	Adjustment above a conveyor system	68
Fig. 35:	Adjustment of the angle $\boldsymbol{\beta}$	68
Fig. 36:	Adjustment of the angle α	69
Fig. 37:	Angle $\boldsymbol{\gamma}$ and \boldsymbol{y} coordinate and \boldsymbol{z} coordinate	69
Fig. 38:	Example of a scanned conveyor system	70
Fig. 39:	Entry of the distance from the zero point	70
Fig. 40:	Scanned test object	71

Fig. 41:	Use of variables for configuration	.75
Fig. 42:	Dimensional drawing LMS400	.78
Fig. 43:	Dimensional drawing mounting kit for LMS400 laser measurement sensor	.79

1 About this document

Please read this chapter carefully before working with this documentation and the LMS400 laser measurement sensor.

1.1 Function of this document

These operating instructions are designed **to address the technical personnel** in regards to safe mounting, installation, configuration, electrical installation, commissioning, operation and maintenance of the LMS400 laser measurement sensor.

1.2 Target group

The intended target group for this document is people in the following positions:

1.2.1 Mounting, electrical installation, maintenance and replacement

Factory electricians and service engineers

1.2.2 Commissioning, operation and configuration

Technicians and engineers

1.3 Scope

These operating instructions apply to the following variants:

LMS400 variant	Laser power	Material of front screen	Part.No.
LMS400-1000	7,5 mW	Float glass	1027897
LMS400-2000	10 mW	Float glass	1041725
LMS400-1000S02	7.5 mW	Polycarbonate ¹⁾	1070166

Tab. 1: Variants of the LMS400 laser measurement sensor

 Used in order to prevent fragments of glass being produced in the event of mechanical damage (in food applications, for instance). Plastic panes have a higher optical attenuation value than glass panes. This may result in a reduction in the measurement accuracy and detection capacity of the device as compared with the standard variant.

1.4 Depth of information

These operating instructions contain the following information on the LMS400 laser measurement sensor:

- mounting
- electrical installation
- commissioning and configuration
- maintenance
- troubleshooting and rectification
- ordering information
- conformity and approval

Planning and using measurement sensors such as the LMS400 also require specific technical skills which are not detailed in this documentation.

The LMS400 is configured on-site for the related application using the SOPAS ET configuration software (see chapter 7 *"Configuration (parameterisation)" on page* 65).

When operating the LMS400 laser measurement sensor, the national, local and statutory rules and regulations must be observed.

- **Notes** In the following document, LMS400 refers to the LMS400-1000 and the LMS400-2000 except when it is necessary to be more specific.
 - Please refer also to the LMS400 information in the Internet at www.sick.com/Ims4xx.

1.5 Symbology used

Recommendation Recommendations are designed to give you assistance in the decision-making process with respect to a certain function or a technical measure.

Note Refer to notes for device special features.

Explanation

MENU COMMAND This typeface indicates a term in the SOPAS ET user interface.

Terminal output This typeface indicates messages that the LMS400 outputs via its aux interface.

Instructions for taking action are shown by an arrow. Read carefully and follow the

Explanations provide background knowledge on technical relationships.

> Take action ...

This symbol refers to additionally available documentation.

Warning!

instructions for action.

A warning indicates an actual or potential hazard. They are designed to help you to prevent accidents and to protect the device from being damaged.

Read carefully and follow the warning notices!

Software notes show where you can make the appropriate settings and adjustments in the SOPAS ET configuration software.

2 For your safety

This chapter deals with your own safety and the safety of the equipment operators.

> Please read this chapter carefully before working with the LMS400.

2.1 Authorized personnel

The LMS400 laser measurement sensor must be installed, commissioned and serviced only by adequately qualified personnel.

The following qualifications are necessary for the various tasks:

2.1.1 Mounting and maintenance

- basic technical training
- knowledge of the current safety regulations in the workplace

2.1.2 Electrical installation and replacement

- practical electrical training
- knowledge of current electrical safety regulations
- knowledge on the use and operation of devices in the related application (e.g. conveyors)

2.1.3 Commissioning, operation and configuration

- knowledge on the use and operation of devices in the related application (e.g. conveyors)
- knowledge on the software and hardware environment in the related application (e.g. conveyors)
- basic knowledge of the Windows operating system
- basic knowledge of an HTML browser (e.g. Internet Explorer)
- basic knowledge of data transmission

2.2 Applications of the device

The LMS400 laser measurement sensor is intended exclusively for use in industrial environments. When used in residential areas it can cause interferences. The LMS400 measures objects of any shape and determines the following contour data:

- angular position
- distance to the zero point on the respective angular position
- RIS value (Remission Information System, see section 3.6.2 "Remission value" on page 28)

This information is passed by the sensor over one of its data interfaces to the customer's computer for further processing.

Compatibility of devices with older firmware versions

The parameter sets for a LMS400 with a firmware version lower than V1.13 saved in a SOPAS ET project cannot be transferred to devices with a firmware version from V1.13.

2.3 Correct use

The LMS400 laser measurement sensor must be used only as defined in section 2.2 *"Applications of the device" on page 13.* It must be initialised only by qualified personnel and only in industrial environments.

If the device is used for any other purposes or modified in any way – also during mounting and installation – any warranty claim against SICK AG shall become void.

2.4 General safety notes and protective measures

Safety notes

Please observe the following items in order to ensure the correct and safe use of the LMS400 laser measurement sensor.

- The notices in these operating instructions (e.g. on use, mounting, installation or integration into the existing machine controller) must be observed.
 - National/international rules and regulations apply to the installation, commissioning, use and periodic technical inspections of the laser measurement sensor, in particular:
 - work safety regulations/safety rules
 - other relevant health and safety regulations
 - Manufacturers and operators of the system are responsible for obtaining and observing all applicable safety regulations and rules.
 - The tests must be carried out by specialist personnel or specially qualified and authorized personnel and must be recorded and documented to ensure that the tests can be reconstructed and retraced at any time.
 - The operating instructions must be made available to the operator of the system where the LMS400 laser measurement sensor is used. The operator of the system is to be instructed in the use of the device by specialist personnel and must be instructed to read the operating instructions.

Risk of injury from electrical power!

The LMS400 laser measurement sensor is connected to 24 V DC.

Observe the current safety regulations when working on electrical systems.

The LMS400 laser measurement sensor is intended exclusively for use in industrial environments. When used in residential areas it can cause interferences.

2.4.1 Laser radiation

	<u> </u>	<u> </u>
Laserstrahlung!	Laser radiation!	Rayonnement laser !
LASER PRODUKT	CLASS 2	APPAREIL À
KLASSE 2	LASER PRODUCT	LASER DE CLASSE 2
Nicht in den Strahl blicken!	Do not stare into beam!	Ne pas regarder dans le
Wellenlänge: 650 nm - 670 nm	Wavelength: 650 nm - 670 nm	faisceau !
(sichtbares Rotlicht)	(visible red light)	Longueur d'onde:
IEC 60825-1: Ed.2007-03	IEC 60825-1: Ed. 2007-03.	650 nm - 670 nm
		(lumière rouge visibles)
		IEC 60825-1: Ed. 2007-03.
LMS400-1000:	LMS400-1000:	LMS400-1000:
Ausgangsleistung:	Puls output:	Puissance d'impulse:
max. 7.5 mW Spitze, durch-	7.5 mW peak,	7.5 mW valeur créte, <1.0 mW
schnitttlich <1.0 mW	<1.0 mW average	valeur moyenne
Impulsdauer: <200 μs	Puls duration: <200 μs	Durée d'impulse: <200 μs
LMS400-2000:	LMS400-2000:	LMS400-2000:
Ausgangsleistung:	Puls output:	Puissance d'impulse:
max. 10 mW Spitze, durch-	10 mW peak, <1.0 mW average	10 mW valeur créte, <1.0 mW
schnitttlich <1.0 mW	Puls output: <130 μs	valeur moyenne
Impulsdauer: <130 μs		Durée d'impulse: <130 μs
21 CFR 1040.10 und 1040.11	Complies with 21 CFR 1040.10	Soit 21 CFR 1040.10 et
wird erfüllt, mit Ausnahme der	and CFR1040.11 except for	1040.11 à l'exception de
Abweichungen nach Laser	deviations pursuant to Laser	différences sur les indications
Notice 50 vom Juni 2007.	Notice No. 50, June 2007.	du Laser N° 50, juin 2007.
Die im normalen Betrieb	The radiation emitted in normal	Le rayonnement émis en
austretende Strahlung ist	operation is not harmful to the	fonctionnement normal n'est
ungefährlich für die Augen	eyes and human skin.	pas dangereux pour les yeux et
und die menschliche Haut.	On extended beam exposure,	la peau humaine.
Strahlengang kann die Netz-	the retina in the eye may be	Toute exposition prolongée au
haut im Auge beschädigt	damaged	faisceau peut entraîner des
werden.		lésions de la rétine.
VORSICHT -	CAUTION -	PRUDENCE -
Bestimmungsfremder Einsatz	the use of controls, or	tout usage de commandes,
kann zu gefährlichen	adjustments or performance of	réglages ou toute application de
Strahlungsexpositionen führen.	rahlungsexpositionen führen. procedures other than those procédures autres	
	specified herein may result in	décrits dans ce document peut
	hazardous radiation exposure.	entraîner une exposition
		dangereuse au rayonnement.
Laserwarnschild	Laser warning sign	Avertissement laser
Siehe Fig. 1 on page 17.	See Fig. 1 on page 17.	Voir Fig. 1 on page 17.

Tab. 2: Laser warnings

	WARNING		
Um die Einhaltung der Laserklasse 2 zu gewährleisten, ist keine Wartung notwendig.	No maintenance is necessary to ensure compliance with laser class 2.	Aucune maintenance n'est né- cessaire pour assurer la confor- mité avec la classe laser 2.	
 Gehäuse nicht öffnen (durch das Öffnen wird der Laser nicht abgeschaltet). Beachten Sie die Laser- schutzbestimmungen gemäß IEC 60825-1 (neueste Fassung) 	 Do not open the housing (opening the housing will not switch off the laser). Pay attention to the laser safety regulations as per IEC 60 825-1 (latest version) 	 Ne pas ouvrir le boîtier. (La diode laser n'est pas désactivée en cas d'ouver- ture du boîtier). Se conformer aux dernières consignes de protection en date contre le rayonnement 	
(noucoto raccang).		laser (IEC 60825-1).	
Laseraustrittsöffnung	Laser output aperture Orifice de sortie		
Die Laseraustrittsöffnung ist die Frontscheibe am LMS400. Siehe <i>Fig. 1 on page 17</i> .	The laser output aperture is the front screen on the LMS400. See <i>Fig. 1 on page 17</i> .	L'orifice de sortie du faisceau la ser correspond à la vitre dans son ensemble. Voir <i>Fig. 1 on page 17</i> .	

Tab. 2: Laser warnings

Damage to the eye from laser radiation!

The LMS400 uses a red laser of class 2. On extended beam exposure, the retina in the eye may be damaged.

The entire front screen serves as the laser output aperture.

Warning — inappropriate use of the LMS400 can result in hazardous exposure to radiation and the laser class may be exceeded.

- Never look directly into the beam (similar to sunlight).
- > Do not point the device laser beam at people.
- During mounting and adjustment of the LMS400, pay attention to possible reflections of the laser beam on reflective surfaces.
- Do not open the housing. (Opening the housing does not interrupt the power to the laser diode during the read cycle.)
- > Observe the latest valid version of the laser safety regulations.

Laser output aperture

The laser output aperture is the front screen of the LMS400.

Note When operated with trigger, the laser diode is only switched on when the switch on signal is present and is switched off again with the shut down signal. For free running data output the laser is continuously switched on.

Laser warning label

On the LMS400 laser measurement sensor are several laser warning labels and laser warning symbols (see *Fig. 2*). The warning text varies depending on the laser power.

Fig. 2: Laser warning labels on the LMS400

 Prior to commissioning, the warning label in English on the device "LASER RADIATION -DO NOT STARE INTO BEAM" is to be replaced with a laser warning label in a language understood by the operators of the system. Laser warning labels in German/English and French/English are in the delivery. Leave the "CAUTION ..." and "AVOID EXPOSURE LASER ..." laser warning labels in English.

- If the LMS400 laser measurement sensor is installed in a system/a trim panel such that the laser warning labels are covered, further warning labels (not in the delivery) are to be affixed beside the outlet aperture for the laser beam on the system/on the trim panel!
- The LMS400 automatically monitors the generation of the beam and automatically shuts down the laser diode in case of irregularities. In this case the red LED lights up and the scanner transmits no more measured values.

2.5 Quick stop and Quick restart

Note Quick stop and Quick restart can also be performed using a configuration telegram (see 11.5.7 on page 103).

2.5.1 Switch the LMS400 off

Switch off the voltage supply for the LMS400 or disconnect the power supply cable.
 The LMS400 retains parameters stored in the internal, non-volatile memory. Measured values on the interface are lost.

2.5.2 Switch on the LMS400

Switch on the voltage supply for the LMS400 or reconnect the supply cable.

The LMS400 restarts operation with the last saved parameters.

2.6 Environmental protection

The LMS400 laser measurement sensor has been designed to minimise environmental impact. It uses only a minimum of power.

While working, always act in an environmentally responsible manner. For this reason please note the following information on disposal.

2.6.1 Power consumption

The LMS400 consumes max. 25 W of power.

2.6.2 Disposal after final de-commissioning

- Always dispose of unserviceable devices in compliance with local/national rules and regulations on waste disposal.
- Dispose of all electronic assemblies as hazardous waste. The electronic assemblies are straightforward to dismantle.

See section 8.2 "Disposal" on page 73.

3 Product description

This chapter provides information on the special features and properties of the LMS400 laser measurement sensor. It describes the construction and the operating principle of the device, in particular the different operating modes.

Note Please read this chapter before mounting, installing and commissioning the device.

3.1 Delivery

The LMS400 laser measurement sensor as delivered comprises:

- 1 LMS400 laser measurement sensor. Model type depends on order.
- 1 Notes on device with electrical circuit diagram for getting started

An overview about the available LMS400 variants, its accessories and, device documentation is available from the web product page

➢ www.sick.com/Ims4xx

3.2 Special features of the LMS400

- electro-sensitive, active measurement technique
- measurement of objects with almost any shape
- works with a very wide range of surface structures
- flexible system configurations
- various filters for pre-processing the measured values

Special features of the Level Control application

- division of the measurement area into vertical sub-sections (columns) for the qualified evaluation for example of levels in containers, complete filling or emptying
- simple equidistant or detailed customer-specific configuration of the columns
- evaluation of the Z values (level) within a sub-section for simple applications in the Y axis, for complex applications also in the X axis
- area measurement, even within a container

Special features of the LMS400-1000

- laser power 7.5 mW
- object remission 6.5% ... 200%

Special features of the LMS400-2000

- laser power 10 mW
- object remission 4.5% ... 100%

3.3 Planning

3.3.1 System requirements of the LMS400 laser measurement sensor

The maximum working range of the LMS400 is 3 m (9.84 in). The smallest permitted distance of the measurement object from the zero point of the LMS400 is 700 mm (27.56 in). The zero point is marked both on the top of the housing and on the underside of the housing (see *Fig. 42 on page 78*).

The working area of the LMS400 covers an angle of 70° (see Fig. 3).

Fig. 3: Operating principle of the LMS400 laser measurement sensor

For the commissioning and operation of the LMS400 laser measurement sensor the following are required:

 typical space required for the LMS400 installation above: about 700 mm (27.56 in) above the highest object

Note

 operating voltages: LMS400: 24 V DC ± 15% in compliance with IEC 364-4-41 (protective extra-low)

The LMS400 must have a clear view of the object to be measured.

voltage), output max. 25 W

• data interface RS-232, RS-422, Ethernet

Note To quickly connect the LMS400 to a host or a PLC in a manner suitable for industrial use, the LMS400 can be connected using a connection module (CDM490) and/or a plug cover can be connected (see 5.4 "Connection via connection module or plug cover" on page 62).

3.3.2 Object specifications

The LMS400 can only safely detect parts of objects, e.g. edges, surrounds or protruding parts, when the area visible for the LMS400 is at least three times the angular resolution resulting from the distance to the zero point. If the area is smaller, distance measurements outside the tolerance of the LMS400 may be produced.

3.3.3 Mounting requirements

The LMS400 must be mounted as follows:

- robust (weight LMS400: approx. 2.3 kg resp. 5.1 lb)
- without vibration
- without oscillations

Note

The mounting kit is easy to mount on an 80-mm-item aluminium profile. The mounting kit is matched to these profiles (see section 10.2.2 "*Dimensional drawing mounting kit No.* 2030421 for LMS400" on page 79). For mounting on other brackets, see section 10.2.1 "*Dimensional drawing LMS400 laser measurement sensor*" on page 78.

Fig. 4: Example for mounting above a conveyor system

To obtain an optimal measurement result, the following points should be noted:

- Typical space required for the LMS400 installation above: about 700 mm (27.56 in) above the highest object
- The LMS400 must have a clear view of the conveyor system.
- The LMS400 laser beams should not reach beyond the application area so that persons or items transported on neighbouring conveyor systems are not detected (detection limiting by beam shielding).
- The maximum detection must be limited to a working range of three metres as otherwise measuring inaccuracies can occur.
- Adequate distance of the LMS400 from bends, induction lines, start-stop areas, inclined areas and separators on the conveyor system

3.3.4 Requirements on the conveyor system (on usage of the Level Control application)

- The conveyor system must have a constant conveyor velocity or an incremental encoder must be installed.
- The objects can be moved on a conveyor system with a flat transporting surface. Rotation, vibration, swaying and slipping of the objects on the conveyor system as well as uneven transporting surfaces can reduce the measurement accuracy and degrade the evaluation.

3.4 Operating principle of the LMS400

The LMS400 laser measurement sensor opto-electronically scans a two-dimensional measurement area.

The LMS400 does not require any reflectors or position markers. This is an active system with a red laser. It is not necessary to illuminate the objects.

Phase shift principle

The LMS400 uses the principle of phase shift (continuous wave). The propagation time of the light and the wavelength used result in a phase shift between the beam sent and the beam received. This phase difference is converted to a frequency. The LMS400 determines the distance of the object from the zero point based on this frequency.

Measured value output

The LMS400 supplies the measured values to its interfaces if this action is requested using a telegram. Distance and remission values, only distance values or only remission values can be queried from the LMS400.

- **Notes** The LMS400 outputs the data after the start of the measurement using the same interface over which the measured values were requested.
 - It is only possible to output all measured values of a scan in real-time using the Ethernet interface.

In case of an error, the measured value output is stopped immediately and an error code output that can be evaluated by the application connected. The error code can also be queried via SOPAS ET from the LMS400 (see 9.3 "Detailed error analysis" on page 74).

In principle a differentiation is to be made between continuous and triggered measured value output.

Level Control

With the aid of the Level Control application, for instance levels in containers, the complete filling of pallets or the complete emptying of transport containers can be checked.

For this purpose mount the LMS400 above a conveyor system. From there it electrosensitively scans objects moving past.

3.5 Measured value output

3.5.1 Free running measured value output

In case of free running measured value output, measured value telegrams are output after the LMS400 has received the measured value request until the output of measured values is stopped by a stop telegram. Measurements are performed continuously between the reception of the measured value request and the reception of the stop telegram; the laser diode is switched on.

Limit the duration of the measurement with free running measured value output!

The service life of the laser diode and as a result of the system will be reduced by continuous measurement. Only start the measurement if objects to be measured are present. Stop the measurement if there are no objects to be measured present. Control the measurement either using your application or use the triggered measurement or the laser control (see 3.5.2 on page 24 and 3.5.3 on page 25).

3.5.2 Control of the measurement process using a gate

PROJECT TREE, LMS400-XX00, PARAMETER, DIGITAL INPUTS/TRIGGER, area GATE

With the triggered measurement the start and end of the measurement is defined by a socalled gate. For the measured value output, measured values are initially requested using the sMN mLRreqtrigdata telegram (see 11.3.2 on page 87). Measured values are then only output if the gate is opened. The measurement and the output of measured values are stopped when the gate is closed.

Fig. 6: Triggered measured value output with gate

The LMS400 provides several trigger sources for gate control:

- digital inputs (The electrical connection is described in section 5.3.3 ""I/O" connection" on page 60.)
- software trigger (see 11.3.3 on page 88)
- CAN-BUS
- test trigger
- triggering by the LMS400 master
- **Note** A trigger has no effect when the device has shut down the laser diode as a result of an error during beam generation.

3.5.3 Laser control

PROJECT TREE, LMS400-XX00, PARAMETER, DIGITAL INPUTS/TRIGGER, area LASER CONTROL

Note

If laser control is active, the laser diode is only switched on when objects are measured. This increases the service life of the system. Without laser control, the laser remains on all the time. This has a negative effect upon the service life of the system.

With laser control active, the switching on of the laser is controlled by the gate configured or is controlled independently by a dedicated source.

- controlled by the gate
 The laser is controlled by the start and stop trigger source configured in the GATE
 SETTINGS area (see "Control of the measurement process using a gate" on page 24).
- independent

The laser is controlled by the source configured in SOPAS ET. The control is independent of the settings made in the Gate settings area.

For independent laser control a photoelectric switch, for instance, is connected to the LMS400 as a trigger. When an object passes the photoelectric switch, the laser is switched on.

Fig. 7: Measured value output with laser control

With independent laser control the laser is switched on by a trigger. However, if this trigger disappears, the measured value output is not stopped.

Only when the LMS400 has calculated using encoder pulses that the laser switch off distance has been reached does it switch off the laser. Only invalid measured values (= 0) are supplied.

In addition, a laser switch-off delay can be configured. Should the conveyor system of the LMS400 remain stationary after the trigger pulse for operational reasons or due to a malfunction, the laser is switched off after the laser switch-off delay configured has elapsed. If, between switching on and off the laser, the start trigger is set again (for instance by a new object passing a photoelectric switch), the distance calculation and the laser switch-off delay counter are set to zero and re-started. The laser therefore **remains switched on**.

3.5.4 Connection of encoders

PROJECT TREE LMS400-XX00, PARAMETER, INCREMENT CONFIG./SYNC., area INCREMENT SETTINGS If the LMS400 is mounted floating or the objects to be measured move, in general the application also needs the position data to be able to further process the measured values. You can connect the data signal from various encoder types to the LMS400. The encoder data is then available to the application on the same interface together with the usual measured values during a scan (see *"Continuous measured value output" on page 84*). The application can calculate the position data from these data.

You can use the following encoders:

- single-channel, is only connected to IN2, no direction detection
- dual-channel, is connected to IN2 and IN4
 The pulses have a phase offset of 90°, as a result direction detection is possible.
- dual-channel, is connected to IN2 and IN4
 The pulses are present on IN2, the direction is indicated on IN4 using the level 0 or 1.

The electrical connection of encoders is described in section 5.3.3 ""I/0" connection" on page 60.

3.6 Measuring accuracy of the LMS400

Several characteristics are available to evaluate the quality of a measured value or a scan:

- the typical systematic measuring error (device specific, see 3.6.1)
- the remission (object and application dependent, see 3.6.2)
- the measured value quality (configuration dependent, see 3.6.4)

3.6.1 Measuring accuracy of the distance measurement

The typical systematic measuring error of the LMS400 is $\pm 4 \text{ mm} (\pm 0.16 \text{ in})$. This information applies for the individual measurement point at an object remission of 10% to 100% at room temperature.

The statistical measuring error is dependent on the remission and distance of the object. *Tab. 3* shows typical and maximum measuring errors for measured value quality 7, room temperature and maximum external light of 2000 Lux.

Remission	Distance	Statistical error (1 sigma)		
		Typical	Maximum	
100/200%	700 to 3000 mm (27.5 to 118 in)	3 mm (0.12 in)		
78%	700 to 3000 mm (27.5 to 118 in)	3 mm (0.12 in)		
	1000 to 2500 mm (39 to 98 in)		5 mm (0.20 in)	
	<1000 or >2500 mm (<39 or >98 in)		7 mm (0.28 in)	
40%	700 to 3000 mm (27.5 to 118 in)	4 mm (0.16 in)		
	1000 to 2500 mm (27.5 to 118 in)		8 mm (0.31 in)	
	<1000 or >2500 mm (39 to 98 in)		9 mm (0.35 in)	
10%	700 to 3000 mm (27.5 to 118 in)	9 mm (0.35 in)		
	1000 to 2500 mm (39 to 98 in)		12 mm (0.47 in)	
	<1000 or >2500 mm (<39 or >98 in)		15 mm (0.59 in)	
6.5%	700 to 3000 mm (27.5 to 118 in)	10 mm (0.39 in)		

Tab. 3: Statistical measuring error

Notes

- The systematic measuring error can be reduced by using external reference targets.
 - As in practice, there are several measured values for an object, the statistical measuring error can be reduced by the application. For example, by offsetting the measured values with each other.
 - Glossy surfaces and other effects can reduce the accuracy.

3.6.2 Remission value

The remission is the capability of a material to reflect the light back. The remission value expresses the signal strength with different object surfaces.

- **Glossy objects** have different remission values at the same distance with varying angle of incidence. The maximum remission of glossy objects is achieved on perpendicular incidence of the beam.
- Matt and dull surfaces have a diffuse remission and therefore have relatively similar remission values independent of the distance from the zero point with a constant angle of incidence.

Tab. 4 shows a few typical remission values.

Material	Typical relative remission value
Photo cardboard (black, matt)	10%
Cardboard (grey)	20%
Wood (rough pine, dirty)	40%
PVC (grey)	50%
Paper (white, matt)	80%
Aluminium (black anodised)	110 150%
Steel (stainless, glossy)	120 150%
Steel (very glossy)	140 200%

Tab. 4: Typical remission values for frequently used materials (source: Kodak standard)

3.6.3 Measurement area expansion

In general, distance measurements are specified with the accuracies given in *Tab. 3* only for remissions of \geq 6.5% to 200% (LMS400-1000) or \geq 4.5% to 100% (LMS400-2000). The LMS400 therefore only outputs measured values and remission values for objects with the specified remission values.

To be able to also measure distances to objects with lower or higher remission, the LMS400 has the EXTENDED RIS DETECTIVITY function (RIS = Remission Information System). This facilitates the improved detection of dark or light bodies with **reduced accuracy**.

PROJECT TREE, LMS400-XX00, PARAMETER, BASIC PARAMETER, ADVANCED PARAMETERS With the function activated, the LMS400 also returns the measured values (see 3.6.4 on page 29) if the remission value is <4.5% or >100% or <6.5% or >200%. For these measured values the following applies:

- The distance value may not have the measuring accuracy defined in section 3.6.1 on page 27.
- Measurement points/objects with remission values <4,5% or <6,5% will not necessarily be detected by another LMS400 because the remission value determined is dependent on the factory calibration of the system, outside the specified range the calibration may be subject to minor variations.

With extended RIS detectivity, your application must therefore evaluate, based on additional criteria, whether the distance value is to be used or not.

3.6.4 Measured value quality

The "Measured Value Quality" information expresses how much computation time is available to the sensor for the calculation of the measured distance value. The measured value quality should ideally be \geq 7. A higher value corresponds to better measured value quality.

Note The information in the data sheet (see section 10.1 "Data sheet LMS400 laser measurement sensor" on page 76) relate to the measured value quality 7. If the measured value quality determined from the parameters is <7, the sensor is no longer compliant with the values given in the technical data. If the measured value quality is \geq 7, the technical data apply.

PROJECT TREE, LMS400-XX00, PARAMETER, BASIC PARAMETER, CURRENT DEVICE PARAMETERS

With a coarse angular resolution and a low scanning frequency, the sensor achieves a measured value quality that tends to be higher than with a fine angular resolution and a high scanning frequency. *Tab.* 5 shows the possible measured value quality.

LMS400					
Angular resolution	f _{scan}	Measured value quality	Angular resolution	f _{scan}	Measured value quality
0.1333°	360	6	0.2857°	420	7
0.1428°	380	6	0.3077°	450	7
0.1538°	410	6	0.3333°	490	7
0.1667°	450	6	0.3636°	500	7
0.1818°	490	6	0.5000°	380	8
0.2500°	370	7	1.0000°	390	9
0.2667°	390	7			

Tab. 5: Possible measured value quality

3.7 Filtering measured values

The LMS400 has digital filters for the pre-processing and optimisation of the measured distance values.

PROJECT TREE, LMS400-XX00, PARAMETER, FILTER

• You can combine the filters as required. If several filters are active, then the filters act one after the other on the result of the previous filter. The processing in this case follows the following sequence:

edge filter, median filter, range filter, mean filter.

• Active filter functions change the measured values that are output. It is not possible to convert filtered output values back to the original measured values.

3.7.1 Edge filter

The edge filter prevents incorrect/extreme distance values at edges; these values are produced because it was not possible to determine the distance value for the previous or next point (e.g. if the previous/next measurement point was too dark or outside the measurement area of 3 metres).

With the edge filter enabled, the LMS400 also sets a distance value to 0 at each edge. *Tab.* 6 shows an example of unfiltered and filtered measured values.

	Angle (distance_1 to _n)												
	1	2	3	4	5	6	7	8	9				
Unfiltered Scan 1	0	750	1100	1150	1030	1050	1100	1800	0	0			
Filtered scan 1	0	0	1100	1150	1030	1050	1100	0	0	0			

Tab. 6: Measured values with edge filter

Note Using the edge filter, points can be completely suppressed at the outer edges of the object. In this case the width determined for an object is too narrow by up to 2 × the angular resolution.

3.7.2 Median filter

The median filter reduces individual extreme values over the entire measurement line by outputting the median for each measurement point (not: the mean/average) from a 3×3 matrix. The matrix comprises nine measured values: The distance values for the point and its neighbouring points, as well as the distance values determined for these points in the previous and subsequent scan.

	Angle (distance_1 to _n)											
	1	2	3		4	5	6	7	8	9		
Scan 1	0	0	850	1	.100	1150	1030	1050	1100	0	0	
Scan 2	0	0	950	1	.200	1250	1130	1150	1200	0	0	
Scan 3	0	0	850	1	.150	1200	1080	1100	1150	0	0	
	:				·							

 Tab. 7:
 Example median filter: Unfiltered measured values

These nine measured values are sorted in ascending order, the fifth highest measured value is output as the measured value.

		Angle (distance_2 to _n)										
	1	2	3	4	5	6	7	8	9			
1 = lowest value		0	0	850	1030	1030	1030	0	0	0		
2		0	0	850	1080	1050	1050	0	0	0		
3	e	0	0	950	1100	1080	1080	0	0	0		
4	ırab	0	850	1100	1130	1100	1100	1050	0	0		
5 = median	eası	0	850	1150	1150	1130	1100	1100	0	0		
6	ot m	0	950	1150	1150	1150	1130	1100	0	0		
7	ž	850	1100	1200	1200	1150	1150	1150	1100			
8		850	1150	1200	1200	1200	1150	1150	1200			
9 = highest value		950	1200	1250	1250	1250	1200	1200	1150			

Tab. 8: Example median filter: Determining the median for scan 2

Tab. 9 shows the unfiltered and filtered measured values for scan 2 from the previous example.

	Angle (distance_1 to _n)											
	1	2	3	4	5	6	7	8	9			
Unfiltered scan 2	0	0	950	1200	1250	1130	1150	1200	0	0		
Median of scan 2	Х	0	850	1150	1150	1130	1100	1100	0	Х		

Tab. 9: Measured values with median filter

The examples shows the following properties of the median filter:

- The measured values are smoothed, individual outliers are not taken into account.
- The edges of objects are, however, retained.

Notes

- It is not possible to determine a median for the first and last angular step in a scan. The distance value 0 is always output.
- For the first scan after confirmation of the measured value telegram (scan counter = 1) it is not possible to output any measured values.
- Following completion of the third scan, the median for the second scan is calculated and output. There is therefore always an offset in time of one scan. However, the correct value for the scan (= 2) is always output in the scan counter such that e.g. the I/O status can be assigned to the scan. *Tab.* 10 shows the delay for different scanning frequencies (for the LMS400-1000 only values ≥360 Hz are relevant).

Scanning frequency	Median filter enabled
150 Hz	6.6 ms
200 Hz	5.0 ms
250 Hz	4.0 ms
300 Hz	3.3 ms
360 Hz	2.8 ms
400 Hz	2.5 ms
450 Hz	2.2 ms
500 Hz	2.0 ms

Tab. 10: Measured data output delay due to the median filter

 If median and mean filters are used together, it is not necessary to take into account any additional time offset for the median filter. This is due to the formation of the mean taking longer than the determination of the median and the median can be formed while the mean is determined.

Examples:

- median filter at 400 Hz scanning frequency = 2.5 ms delay
- mean filter (2 means) + median filter at 200 Hz = 10 ms delay

3.7.3 Range filter

The range filter reduces the number of valid measured values by only outputting distance values that are within a specific distance range. For other measured values the filter delivers the distance value 0 and the remission value 0 as the result.

	Angle (distance_1 to _n)											
	1	2	3	4	5	6	7	8	9			
Unfiltered scan 1	890	950	1500	1450	1330	1450	1600	1800	2050	2150		
Filtered scan 1	0	0	1500	1450	1330	1450	1600	1800	0	0		

Tab. 11: Measured values with an range filter from 1000 to 2000 mm (39 to 79 in)

Tab. 11 shows the following properties of the range filter:

- Measured values outside the configured range are not output.
- Measured values inside the configured range are not changed.

3.7.4 Mean filter

The mean filter smooths the distance value. For this purpose the filter forms the arithmetic mean over several scans. The number of scans can be configured.

		Angle (distance_1 to _n)									
	1	2	3	4	5	6	7	8	9		
Scan 1	0	0	1100	1100	1150	1150	1380	1380	0	0	
Scan 2	0	0	1200	1200	1190	950	1500	1500	0	0	
Scan 3	0	0	1150	1450	1200	1200	1450	1450	0	0	
Scan 4	0	0	1280	1280	1180	1180	1430	1430	0	0	
Scan 5	0	0	1170	1170	1220	1220	1470	1150	0	0	
1. Output value	0	0	1180	1240	1188	1140	1446	1382	0	0	
(scan 5)											
Scan 1	0	0	1100	1100	1150	1150	1380	1380	0	0	
Scan 2	0	0	1200	1200	1190	950	1500	1500	0	0	
Scan 3	0	730	1150	1450	1200	1200	1450	1450	0	0	
Scan 4	0	0	1280	1280	1180	1180	1430	1430	0	0	
Scan 5	0	0	1170	1170	1220	1220	1470	1150	0	0	
2. Output value (scan 10)	0	146	1180	1240	1188	1140	1446	1382	0	0	

Tab. 12: Measurement values with mathematical filter for five scans

Tab. 12 shows the following properties of the means filter:

- Individual temporal outliers (grey rows in table) affect the mean.
- After confirmation of the measured value telegram, the first measured value is only output after the configured number of scans. There is therefore always an offset in time by the number of scans configured for forming the mean. However, the correct value for the scan is always output in the scan counter such that e.g. the I/O status can be assigned to the scan. *Tab. 13* shows the delay for different scanning frequencies (for the LMS400-1000 only values ≥360 Hz are relevant).

Scanning	Per mean in the	Means	Means	Means
frequency	mean filter	= 2	= 12	= 200
150 Hz	6.6 ms	13.2 ms	79.2 ms	1320 ms
200 Hz	5.0 ms	10 ms	60 ms	1000 ms
250 Hz	4.0 ms	8 ms	48 ms	800 ms
300 Hz	3.3 ms	6.6 ms	39.6 ms	660 ms
360 Hz	2.8 ms	5.5 ms	33.6 ms	560 ms
400 Hz	2.5 ms	5 ms	30 ms	500 ms
450 Hz	2.2 ms	4.4 ms	26.4 ms	440 ms
500 Hz	2.0 ms	4.0 ms	24 ms	400 ms

Tab. 13: Measured data output delay due to mean filter

• If median and mean filters are used together, it is **not** necessary to take into account any additional time offset for the median filter. This is due to the formation of the mean taking longer than the determination of the median and the median can be formed while the mean is determined.

Examples:

- mean filter (12 means) at 360 Hz = 33.6 ms delay
- mean filter (2 means) + median filter at 200 Hz = 10 ms delay

Recommendation

Use the mean filter together with the median filter. In this way individual outliers will be smoothed in advance by the median filter.

3.8 Master/slave operation

In some applications, it is sensible or necessary to use two LMS400. Examples of such applications are:

- Doubling of the effective scanning frequency at the object by operating two LMS400 with the same field of view and with the same angular resolution and scanning frequency. The measured values supplied by the sensors are processed alternately scan for scan.
- Doubling of the field of view by operating two LMS400 with adjacent fields of view. The scans supplied by the sensors are processed in pairs.

So that the two devices can work together, they must be connected using the "System" connection. The electrical connection is described in section 5.3.2 ""System" connection" on page 59. In addition, one device must be configured as the master, the other as the slave.

PROJECT TREE, LMS400-XX00, PARAMETER, INCREMENT CONFIG./SYNC., area SYNCHRONISATION MASTER/SLAVE

- Notes
- On master/slave operation, master and slave must be configured to the same scanning frequency and angular resolution.
 - Once the mirrors have run up, master and slave must synchronise with each other. This can take up to 120 seconds. Note that until synchronisation is complete, the measured values supplied by the two devices are not synchronised.
 - The slave can use the master's digital inputs for triggering. For this purpose the software trigger must be configured in the slave as the trigger source.

3.8.1 Phase offset of the rotating mirrors

On the use of two LMS400 in a master/slave system, it may occur that one LMS400 receives the beams from the other LMS400, whether directly (glare) or indirectly (reflection by an object). This can result in incorrect measured results.

To significantly reduce the probability of this problem, the two LMS400 can synchronise with each other so that their rotating mirrors rotate offset from each other by a specific angle. This angle is termed the "Phase".

PROJECT TREE, LMS400-XX00, PARAMETER, INCREMENT CONFIG./SYNC., area SYNCHRONISATION

Determining the right phase

MASTER/SLAVE

Typically the phase for the slave is 0° , and for the master 35° . Reason: The LMS400 has a 70° optical field of view. The probability of mutual interference between two LMS400 is the lowest if the mirrors rotate offset by half the field of view, that is by 35° .

You can configure the phase for each LMS400 individually. The phase of the slave is leading, the phase of the master is lagging.

Fig. 8: Example for the phase configuration of a master/slave system

3.9 Level Control

With the aid of the Level Control application, for instance levels in containers, the complete filling of pallets or the complete emptying of transport containers can be checked.

For this purpose mount the LMS400 at an angle of 90° over a conveyor system. From there it electro-sensitively scans objects moving past (*Fig.* 9).

Fig. 9: LMS400 above a conveyor system

With the aid of the application you can divide a defined measurement area in the working area of the LMS400 into several vertical sub-sections. You can allocate switching points including hysteresis to these so-called columns (*Fig. 10*).

Fig. 10: Working area of the application

With the aid of an external trigger or with an internal gate you can define a length for the columns in the transporting direction.

The LMS400 can now evaluate the Z values for the columns in the Y and X directions and output the result on four digital outputs and one analogue output. In addition, using telegrams you can query the measured values within the columns and whether the values are above or below the switching points. This information can then be processed in another application.

In the example below crates are checked for complete filling. The crates are transported through the scan line of the LMS400 for this check (*Fig. 11*).

Fig. 11: Application example
When the crates move through the columns of the measurement area, among other aspects the tops on the bottles are scanned. This action results in all columns exceeding the switching points if the row of bottles is complete.

Fig. 12: Example for the evaluation of the columns

If one or more bottles are missing, the switching point for the related column is not reached, the crate is detected as not full.

The result can be indicated with the aid of the digital output on the LMS400:

- switching points exceeded on all columns = yes, output = high
- switching points not reached on all columns = no, output = low

Limits of the application

Due to the radial scanning during the measurement, fewer measured values are obtained in the outer columns than in the columns in the middle. The measurement is denser in the inner area.

Fig. 13: Density of the measured points

Also shadows are produced during the measurements due to the radial scanning of the LMS400. The LMS400 cannot measure in these shadows. These shadows increase the higher the objects to be measured and the further the objects are from the vertical beam of the LMS400.

Fig. 14: Shadows during measurement

Recommendations > Mount the LMS400 as high as possible over the objects.

Mount the LMS400 centrally over the objects and define a measurement area centred on the vertical beam.

3.10 Configurable functions for Level Control

The parameters for the Level Control application are displayed in SOPAS ET immediately after you have activated the application.

PROJECT TREE, LMS400-XX00, PARAMETER, APPLICATION

3.10.1 Global zero point

As delivered the zero point for the distance measurement is at the origin of the laser (marked by a dot on the top and underside of the housing).

Fig. 15: Zero point of the LMS400 as delivered

In addition, the Level Control application requires a global zero point to which all other settings refer (e.g. right edge of the conveyor system as seen in the transporting direction). You can define this global zero point with the aid of the coordinates in SOPAS ET.

PROJECT TREE, LMS400-XX00, PARAMETER, POSITION, area COORDINATES The installation setup in SOPAS ET will support you during the definition of the coordinates

(see section 7.2.4 on page 69).

The global zero point for all the subsequent parameters for the application is defined by the coordinates.

Note In all the following considerations Y extends to the left!

3.10.2 Measurement area

You define the working area relevant for the Level Control application as the measurement area. You define for this measurement area a left and right border as well as a top and bottom border. All four values refer to the global zero point defined previously.

PROJECT TREE, LMS400-XX00, PARAMETER, POSITION, area MEASUREMENTAREA

Fig. 17: Measurement area

Notes

• Ensure that the zero point is on the right and Y extends to the left. For this reason the value for the left border is always greater than the value for the right border.

- The bottom border can have a negative value, e.g. to include the conveyor system in the evaluation.
- The bottom border can have a positive value, e.g. to exclude the conveyor system from the evaluation.
- All measured values outside the measurement area are invalid and are not taken into account.

3.10.3 Evaluation in Y direction

To be able to evaluate the measurement results in the measurement area, you divide the measurement area into columns. During this process it is important that you adjust the size of the columns to suit your application.

PROJECT TREE, LMS400-XX00, PARAMETER, LEVEL CONTROL, COLUMN WIDTH

Equidistant column division

With the aid of the equidistant column division (equidistant = same distance apart) you can divide the measurement area into one to 50 columns of the same width. You can configure for all columns:

- a common switching point (Z level) with hysteresis
- a common evaluation mode
- a quality applicable to all columns

Fig. 18: Equidistant column division

Note The numbering of the columns starts at the left of the measurement area.

User-defined column division

With the aid of the user-defined column division you can divide the measurement area into one to 30 columns. You can configure for each column:

a left and a right border

Note

Note that Y extends to the left. For this reason the value for the left border is always greater than the value for the right border.

If you configure a column entirely or partially outside the measurement area, then the measured values inside the column but outside the measurement area are not taken into account.

- a dedicated switching point with hysteresis
- an individual evaluation mode
- a quality that applies only to this column

Fig. 19: User-defined column division

With the user-defined column division there is no fixed order for the columns. Columns can overlap and there can be gaps between columns; the gaps are not evaluated.

Definition of the quality necessary

Due to the formation of shadows and the radial measurement of the LMS400, there is a varying number of measured points in the columns in practically every scan (see also *"Limits of the application" on page 37*). By entering a quality you define how many measured points there must be in a column for the column result to be used in the evaluation.

Recommendation To be able to evaluate a column, there should be at least **three** measured values in the column (SOPAS ET default setting: quality = 3).

If the quality is **not reached** for a column, the result for the column is discarded.

Column evaluation mode

With the mode you define how a measured value is determined for the measured points in a column.

- arithmetic mean
 The arithmetic mean is formed from the values measured.
 Example: 152, 180, 145 => 159
- min/max mean
 The mean from the two extreme values is formed from the values measured.
 Example: 152, **180**, **145** => 162.5
- maximum
 The highest value from the values measured is used for the evaluation.
 Example: 152, **180**, 145 => 180
- minimum
 The lowest value from the values measured is used for the evaluation.
 Example: 152, 180, 145 => 145

Switching point and hysteresis

You define a switching point in millimetres for each column. After the evaluation in the Y direction and X direction it is determined whether the results are above or below the switching point.

The column evaluation mode you have defined is crucial here. If you have, for instance, entered 160 mm (6.30 in) as the Z level, the value is only exceeded in the examples shown above in the "Min/max mean" and "Maximum" mode.

The hysteresis prevents the output value "flickering" if the measured value is near the switching point. The hysteresis is symmetrical around the switching point.

Example: A hysteresis value of 10 mm (0.39 in) on a switching point of 1000 mm (39.37 in) means that the column delivers the result configured when the column exceeds 1005 mm (39.57 in) and drops below 995 mm (39.17 in).

3.10.4 Evaluation in X direction

Along with the Y direction, you can also evaluate the columns in the X direction (transporting direction).

Note

In SOPAS ET the output interval is set to "immediate" by default. In this way the evaluation in the X direction is skipped. You can configure a gate as the output interval for evaluation in the Y and also X direction.

PROJECT TREE, LMS400-XX00, PARAMETER, LEVEL CONTROL, COLUMN LENGTH, area PARAMETER, option Output Interval

You can define the column length either with the aid of an external gate or an internal gate.

Determining the column length using an external gate

PROJECT TREE, LMS400-XX00, PARAMETER, DIGITAL INPUTS/TRIGGER, area GATE

Fig. 21: External gate

If you use an external gate, then the start and end of the gate (that is e.g. switching on and off a photoelectric switch on a digital input) define the length of the columns.

Fig. 22: Distance delay for the gate

Using a distance delay (can be configured in SOPAS ET) a photoelectric switch offset in relation to the scan line can be defined.

In the example, the object initialises the measurement start by entering the photoelectric switch. The end of the measurement is indicated by leaving the photoelectric switch.

However the actual measurement in the column only starts after the distance delay path has been covered 0. It ends as soon as the object leaves the scan line.

The column length is therefore defined by the length of the object, the actual timing of the measurement by the distance delay.

In addition, you can extend the gate produced by the triggering with a so-called expansion distance. This expansion distance is added to or deducted from the gate depending on whether it is positive or negative. It is always added or deducted on both sides. Using a negative expansion distance, e.g. the edges of the crate can be removed from the columns.

Determining the column length using an internal gate

PROJECT TREE, LMS400-XX00, PARAMETER, DIGITAL INPUTS/TRIGGER, ADVANCED IO SETTINGS, area INTERNAL GATE

Fig. 23: Internal gate

If you use an internal gate, the "Internal gate on" parameter defines the length of the columns and the "Internal gate off" parameter the gap between two column series.

The columns can be "generated" continuously by entering the internal gate or instead limited by an external gate.

If you use an external gate, the start and end of the gate define the start and end of column generation. Between this start and end the internal gate defines the length of the columns.

A typical example application is the evaluation of a crate. The crate starts the gate by entering a photoelectric switch. The "Internal gate on" parameter is the same size as a bottle, the "Internal gate off" parameter the same size as the gap between two bottles. A pattern similar to that and in *Fig. 23* is produced.

About the evaluation of scans used

At large column lengths and low conveyor speed a high quantity of scans will be obtained that is inappropriate for the evaluation of a column in the X direction. For this reason you can define an interval in detected per millimetres. One scan is used for the measurement in the X direction per distance entered (see *"Interval" on page 49*).

Fig. 24: Interval

Evaluation within the length of the column

The results evaluated in the Y direction are used for the evaluation. Only the valid results (with sufficient quality) are used.

You also define a quality for the X direction. This quality defines how many valid Y results there must be in the column for the X result (overall result) to be valid.

Using the mode you can define how a measured value is determined from the measured points in the X direction. The same options are available as for the Y mode (see "Column evaluation mode" on page 42).

3.10.5 Procedure in case of invalid values

Definition of the column value

You can define the value for the result of the evaluation for columns in which the quality is not reached. You have two options:

• calculate

COLUMN VALUE

The column value is determined from the values present in the X direction that are actually inadequate. If a value cannot be determined, the bottom border of the measurement area is used as the value (see 3.10.2 "Measurement area" on page 40).

user defined
 The column has the value defined in SOPAS ET.

Definition of the switching value

You can define the switching point for an invalid column independent of the column value for an invalid column. You have four options:

PROJECT TREE, LMS400-XX00, PARAMETER, LEVEL CONTROL, COLUMN LENGTH, area IRREGULAR

- calculate
 Even though the quality is not achieved, a switching value is determined from the measured values available and is used.
- over switching point
 Invalid switching values set the state to "Above switching point".

- under switching point
 - Invalid switching values set the state to "Below switching point".
- retain value
 The previous state for the switching point is retained (above or below).

PROJECT TREE, LMS400-XX00, PARAMETER, LEVEL CONTROL, COLUMN LENGTH, area IRREGULAR SWITCHPOINT

3.10.6 Results of the column evaluation

You can output the result of the column evaluation using digital outputs or the analogue output.

Digital outputs

The LMS400 has four digital outputs. Per output you have four options for the allocation of the output.

PROJECT TREE, LMS400-XX00, PARAMETER, LEVEL CONTROL, RESULT, area DIGITAL OUTPUTS

- A single column switches the output if the switching point in this column is exceeded.
- A single column switches the output if the switching point in this column is not reached.

Note

If the column selected is not activated or present, the output behaves as if you had configured it as inactive.

- All columns switch the output if the switching point in all columns is exceeded.
- All columns switch the output if the switching point in all columns is not reached.

Retention time

As soon as the selected criterion has occurred, the output switches to the active state (as a rule "high", in case of inversion "low"). For each digital output you configure a retention time in milliseconds for which the output remains in this active output state. Adjust the retention time to the input electronics on the downstream system.

Note The output state is also retained for the duration of the retention time after the gate is shut down.

Logic

.

The digital outputs are high in the active state. However, you can also configure each digital output so that it is inverted. The output will then switch "low" in the active state.

Analog output

The LMS400 has an analogue output with a constant current source of 4-20 mA. You can allocate the output to a single column or all columns.

A single column defines the output current.

The measurement area between the top and bottom border is represented linearly on the current range of the analogue output from 4 mA to 20 mA (4 mA means that the quality was not met).

Note

If the column selected is not activated or present, the output behaves as if you had configured it as inactive.

- All columns switch the output (group evaluation).
 - output current = 4 mA, if the switching point is not reached in all columns
 - output current = 20 mA, if the switching point is exceeded in all columns
 - output current = 12 mA, if none of the previous two states is achieved

Retention time

You can configure a retention time in milliseconds for the analogue output. Adjust this retention time to the input electronics on the downstream system.

The output remains in the related state for this time, even if the column results change in the meantime. "Incoming" column results are processed during the retention time and output subsequently.

3.10.7 Output of telegrams

PROJECT TREE, LMS400-XX00, PARAMETER, LEVEL CONTROL, TELEGRAM, AREA SETTINGS

In SOPAS ET you can define which measured value telegram is to be output by the LMS400 if the telegrams are polled by a host (see 11.14.1 on page 132).

- The "Column value" measured value telegram outputs the values measured in the columns in detail (see *Tab. 112 on page 135*).
- The "Switching point states" measured value telegram outputs whether the switching point in a column is exceeded or not reached (see *Tab. 113 on page 137*).

In addition, you can control the output of the telegrams via the switching point for a column.

- Telegram output starts (after polling by a host, see <u>11.14.1 on page 132</u>) as soon as the switching value for a specific column is exceeded.
- Telegram output stops as soon as the switching value for this column is not achieved.

3.10.8 Filtered measurement

Note The area filter, the mathematical filter and the median filter are not available for the Level Control application. The filters are hidden in SOPAS ET.

Edge filter, Z median filter and interval act on the measured values before the column values are determined.

If several filters are active, then the filters act one after the other on the result of the previous filter. The processing in this case follows the following sequence:

- edge filter
- interval
- Z median filter

Edge filter

See section 3.7.1 "Edge filter" on page 30.

Z median filter

PROJECT TREE, LMS400-XX00, PARAMETER, FILTER, area LEVEL CONTROL

A special median filter is available for the Level Control application. This forms a 3 by 3 median from the Z values for the measured points (and not, like the median filter, from the polar distance values).

Interval

PROJECT TREE, LMS400-XX00, PARAMETER, FILTER, area LEVEL CONTROL

The number of scans in a column is defined as a function of the column length, conveyor speed and scanning frequency. At large column lengths and low conveyor speed a quantity of scans will be obtained that is inappropriate for the evaluation of a column in the X direction.

In this case with the aid of an interval you can define the magnitude of the distance between two scans that are to be used for the measurement (see also 3.10.4 "Evaluation in X direction" on page 43).

Note If more than 3000 scans are reached per column length, an error occurs that is output in the measured value telegram under "Status" (see 11.14.1 on page 132).

3.11 Interface specification

The LMS400 has three different interfaces for the configuration for the transmission of measured values. You can configure the LMS400 and also receive measured values via each of these interfaces.

Note It is only possible to output all measured values of a scan in real-time using the Ethernet interface.

3.11.1 Ethernet interface

The Ethernet interface has a data transmission rate of 10 MBaud (10Base-T). The interface is a TCP/IP peer to peer interface. Only half duplex is supported. Please ensure that the interface of your application is set to half duplex.

The factory setting for the Ethernet interface is as follows:

- IP ADDRESS: 192.168.0.1
- TCP/IP PORT: 2111
- SUBNET MASK: 255.255.255.0

If necessary, adjust the TCP/IP configuration for the Ethernet interface to enable a connected PC (client) to communicate with the LMS400 via Ethernet: PROJECT TREE, LMS400-XX00, INTERFACE, ETHERNET, area ETHERNET

Notes

- The parameters for the Ethernet interface can only be configured using SOPAS ET if the PC is connected via the Aux interface or the host interface.
- If, on the other hand, the LMS400 is configured using telegrams (see 11.11 "Configuration telegrams for the Ethernet interface" on page 124), the Ethernet interface can then also be configured using telegrams, if the host is connected to the Ethernet interface.
- To make the changes to the interface parameters effective, after configuration the LMS400 must be reset (see 2.5 "Quick stop and Quick restart" on page 18).

You will find a description of the electrical interface in section 5.3.1 ""Ethernet" connection" on page 59.

3.11.2 Aux interface

The Aux interface allows the configuration of the LMS400 as well as the output of measured values. However, this feature is primarily intended to provide a reliable data connection for configuration (also with simultaneous operation of the host interface). Therefore, the following interface parameters can not be changed:

- 9600 Baud
- 8 data bits
- 1 stop bit
- no parity

You will find a description of the electrical interface in section 5.3.4 ""Serial" connection" on page 61.

3.11.3 Host interface

The host interface allows the configuration of the LMS400 as well as the output of measured values.

You can choose whether to configure the pins 6 to 9 as RS-232 or as RS-422: PROJECT TREE, LMS400-XX00, INTERFACE, SERIAL, area SERIAL HOST, option HARDWARE

The interface parameters are freely configurable. The factory setting for the host interface is as follows:

- RS-232
- 9600 Baud
- 8 data bits
- 1 stop bit
- no parity
- **Note** The interface parameters for the host interface can be configured only using the Aux interface or the Ethernet interface.

You will find a description of the electrical interface in section 5.3.4 ""Serial" connection" on page 61.

3.12 Data communication using telegrams

The LMS400 sends telegrams over the interfaces described above to communicate with the connected application. The following functions can be run using telegrams:

- request for measured values by the application and subsequent output of the measured values by the LMS400
- parameter setting by the application for the configuration of the LMS400
- parameters and status log querying by the application

The telegrams each comprise a frame (see 3.12.1 on page 51) and the data. Different telegram types are used as data:

- methods for querying measured values
- variables for configuration
- methods for configuration

These three types have different syntaxes. This situation must be taken into account on writing the software interface for your application (see 3.12.2 and 3.12.3).

A detailed description of the different telegrams can be found in the annex (see 11.2 "Overview of the telegrams" on page 81).

3.12.1 Frame and coding for the telegrams

The data is placed in different frames and coded differently depending on the interface used.

Telegrams on the aux interface or the host interface

The table shows the pre-setting for the frame for the aux and host interfaces.

	Frame	Telegram	Frame
Code	STX	Data (see 11.2 on page 81)	ETX
Length (byte)	1	≤2498	1
Description	Start of text character	ASCII coded. The length is dependent on the previous send telegram.	End of text character

Tab. 14: Frame for the telegrams on the aux interface or the host interface

The frame for the host interface can be configured in SOPAS ET or via configuration telegrams: PROJECT TREE, LMS400-XX00, INTERFACE, SERIAL, area SERIAL HOST or 11.10.5 on page 119 to 11.10.9 on page 123.

In this way, you can use two stop bytes, for example (e.g. to terminate telegrams with CR/ LF), or insert a block check byte before or after the stop byte.

Telegrams on the Ethernet interface

	Frame				Telegram	Fr	ame		
Code	TCP/IP	STX	STX	STX	STX	Telegram	Data (see 11.2 on	Check-	TCP/IP
	Start Frame					length	page 81)	sum	Stop Frame
Length (byte)	Defined by	1	1	1	1	4	≤2495	1	Defined by
Description	the trans-	Start	of tex	t char	acter	Data length	Binary encoded. The	See	the trans-
	mission					without CS,	length is dependent	"Calcu-	mission
						Motorola	on the previous send	lation of	
						format	telegram.	the check-	
								sum"	
								further	
								below	

Tab. 15:Frame for the telegrams on the Ethernet interface

Calculation of the checksum

The checksum is calculated using an XOR operator for every byte of the data, that is without the frame.

3.12.2 Methods for querying measured values

There are various measured value telegrams for triggering measured values output. Measured values are requested using telegrams in four steps:

- 1. The terminal sends a measured value telegram, comprising the command **sMN** (SOPAS method by name), the telegram name and one or more parameters.
- 2. The LMS400 sends a confirmation that the telegram is being processed, comprising the confirmation **sMA** (SOPAS method acknowledge) for the telegram name.
- 3. After the processing of the telegram, the LMS400 sends a reply that the parameters have been set, comprising **sAN** (SOPAS answer), the telegram name for an error code (00000000 = no error).
- 4. The LMS400 sends measured values continuously.

Or (on control with the aid of a trigger):

The LMS400 sends the measured values as long as a trigger is present.

Or (on sampling a specific number of scans):

The LMS400 sends as many measured values as have been requested.

Fig. 25: Use of methods for querying measured values

3.12.3 Variables and methods for configuration

Variables for configuration

Variables are used if parameters can be set immediately by the LMS400 and confirmed. Configuration using variables is carried out in two steps:

- 1. The terminal sends a telegram, comprising the command **sWN** (SOPAS write by name), the telegram name and one or more parameters.
- 2. The LMS400 sends a reply that the parameters have been set, comprising **sWA** (SOPAS write answer) for the telegram name.

Note Some of the telegrams also return the result.

✓ Frame>sWN Telegram name Parameter <frame/>	
<pre> Frame>sWA Telegram name<frame/> </pre>	

Fig. 26: Use of variables for configuration

Methods for configuration

Methods are used if the LMS400 needs a certain amount of time to set the parameters (e.g. to change its measuring frequency). Configuration using methods is always carried out in three steps:

- 1. The terminal sends a telegram, comprising the command **sMN** (SOPAS method by name), the telegram name and one or more parameters.
- 2. The LMS400 sends a confirmation that the telegram is being processed, comprising the confirmation **sMA** (SOPAS method acknowledge) for the telegram name.
- 3. After the processing of the telegram, the LMS400 sends a reply that the parameters have been set, comprising **sAN** (SOPAS answer), the telegram name for an error code (00000000 = no error).

Fig. 27: Used of methods for configuration

Note The two methods for setting the basic parameters sMN mSCconfigbyfreq and sMN mSCconfigbyang also return the parameters actually used and the measured value quality (see 11.4.2 on page 92 and 11.4.3 on page 94).

Sequence during configuration using telegrams

In exactly the same way as for configuration with the aid of SOPAS, certain parameters on the LMS400 are only allowed to be set or changed with appropriate authorisation. The modified parameters must also be permanently saved in the device following completion of the configuration. The table shows in principle the sequence during configuration with telegrams.

Telegram	Description
sMN SetAcessMode	Login
sWN Configuration telegram 1	Configuration steps
sWN Configuration telegram n	
sMN mEEwriteall	Save parameters permanently
sMN Run	Terminate configuration

Tab. 16: Sequence during configuration using telegrams

Note With the two methods for setting the basic parameters sMN mSCconfigbyfreq and sMN mSCconfigbyang the procedure is different: Prior login is not necessary as this is part of the telegrams (see 11.4.2 on page 92 and 11.4.3 on page 94).

3.13 Status indicators

Six LEDs on the LMS400 laser measurement sensor provide a visual indication of the operating status and any errors that have occurred.

LED	Display	Function	
Device Ready	Green	Initialisation and self test successful. Device ready for	
		operation	
	Red	Error on initialisation or self-test or on the occurrence of	
		errors in operation	
Result	Off	Not assigned	
Laser On	Green	Laser diode on	
Data	Green	Flashes when the LMS400 is transmitting data over the	
		host interface	
LNK 10Base-T	Green	10Base-T: Ethernet link	
TX 10Base-T	Orange	10Base-T: Flashes when the LMS400 is transmitting	
		data to the computer over the Ethernet interface	

Tab. 17: Meaning of the LEDs

4 Mounting

4.1 Mounting requirements

The LMS400 must be mounted as follows:

- robust (weight LMS400: approx. 2.3 kg resp. 5.1 lb)
- without vibration
- without oscillations

Important

Only if the LMS400 is mounted so it is not subjected to shocks or vibration can an optimal measurement result be expected!

4.2 Overview of the mounting steps

- Install mounting kit for LMS400.
- Mount LMS400 on mounting kit.
- Connect LMS400 to the voltage supply.

4.3 Preparations for mounting

4.3.1 Components to be mounted

- an LMS400 laser measurement sensor (weight approx. 2.3 kg resp. 5.1 lb)
- a mounting kit for the LMS400
- a set of connection cables

4.3.2 Place material at hand

The following materials are required for the mounting kit and for the LMS400:

- M6 screws for mounting the mounting kit to the frame or other assembly. (The mounting kit has eight D6.6 holes.)
- three M8 × 12 screws with washers for fastening the LMS400 to the mounting kit (included in the delivery)
- tool set

4.4 Mounting with mounting kit No. 2030421

A mounting kit can be supplied for mounting the LMS400. This can be finely adjusted in two axes.

Note The LMS400 must be installed such that the intensity of light from external sources does not exceed 2 kLux.

Fig. 28: Mounting kit for LMS400

Note You will find the dimensional drawing for the mounting kit in section 10.2.2 "*Dimensional drawing mounting kit No.* 2030421 for LMS400" on page 79.

4.5 Dismantling the sensor

- 1. Switch off the supply voltage.
- 2. Remove the connection cables.
- 3. Remove LMS400 from the mounting kit.
- **Note** On final decommissioning, please observe the disposal requirements in section 8.2 *"Disposal" on page* 73 for environmentally correct disposal.

5 Electrical installation

Switch the entire machine/system off line!

The machine/system could inadvertently start up while you are connecting the device.

Ensure that the entire machine/system is disconnected during the electrical installation.

Note The LMS400 laser measurement sensor complies with the requirements in the standard on the radiated emissions as defined for class A (industrial environment). It may cause radio interference in residential areas. If radio interference occurs, the person(s) affected may demand that the operator take appropriate action for suppressing interference.

5.1 Overview of the installation steps

- Connect supply voltage to the LMS400.
- Connect PC to the aux interface of the LMS400.

5.2 Electrical connections and cables

In the electrical connections, the LMS400 has interfaces for communication between master for slave as well as interfaces to the exterior.

Fig. 29: Position of the electric connections of the LMS400

Connection	Туре	Function
Ethernet	RJ-45	TCP/IP communication, exchange of telegrams
System	RJ-45	Synchronisation master/slave
I/0	D-Sub	Connection of external sensors, supply voltage
Serial	D-Sub	Serial communication, exchange of telegrams, supply
		voltage

Tab. 18: Function of the electric connections of the LMS400

You can connect the supply voltage alternatively at the "I/O" connection or the "Serial" connection.

• To quickly connect the LMS400 to a host or a PLC in a manner suitable for industrial use, the LMS400 can be connected using a connection module (CDM490) and/or a plug cover can be connected (see 5.4 "Connection via connection module or plug cover" on page 62).

5.3 Pin assignment of the connections

5.3.1 "Ethernet" connection

The LMS400 can be connected with a standard Cat. 5 patch cable.

	Pin	Signal	Function
	1	TX+	Ethernet interface
┎_┲┿┱ <u></u>	2	TX-	Ethernet interface
	3	RX+	Ethernet interface
	4	Not assigned	Do not use!
	5	Not assigned	Do not use!
	6	RX-	Ethernet interface
	7	Not assigned	Do not use!
	8	Not assigned	Do not use!

Tab. 19: Pin assignment of the "Ethernet" connection (8-pin RJ45 female connector)

5.3.2 "System" connection

Via the "System" connection master and slave of two connected LMS400 are synchronised. For the connection of master and slave a standard Cat. 5 crossover cable is suitable.

	Pin	Signal	Function
	1	FSIOP	Synchronisation master/slave
」 ₽ ⁺ ч <mark>\</mark>	2	FSION	Synchronisation master/slave
	3	FSIIP	Synchronisation master/slave
	4	Not assigned	Do not use!
	5	Not assigned	Do not use!
	6	FSIIN	Synchronisation master/slave
	7	Not assigned	Do not use!
	8	Not assigned	Do not use!

Tab. 20: Pin assignment of the "System" connection (8-pin RJ45 female connector)

	Pin	Signal	Function
	1	V _S	Supply voltage Sensor
	2	IN3	Input 3 (trigger), digital
	3	IN1	Input 1 (trigger), digital
	4	OUT1	Output 1, digital
10 5 1 6	5	GND	Ground Sensor
	6	IN2	Input 2 (encoder), digital
	7	IN4	Input 4 (encoder), digital
	8	OUT2	Output 2, digital
10 11	9	GND IN14	Ground Inputs 1 4
	10	OUT3	Output 3, digital
	11	Reserved	Do not use!
	12	Reserved	Do not use!
	13	OUTA	Output Analog (4 mA 20 mA)
	14	GND OUTA	Ground Output Analog
	15	OUT4	Output 4, digital
	Housing	-	Screen/earth

5.3.3 "I/O" connection

Tab. 21: Pin assignment of the "I/O" connection (D-Sub-HD female connector)

- Notes The maximum frequency on the inputs IN2 and IN4 (encoder) is 10 kHz.
 - The maximum output current on the digital outputs 1 ... 4 is 400 mA. If a load is not connected to the outputs, the outputs will exhibit tristate behavior. Normal switching behavior is achieved on the termination with 10 kOhm.

Fig. 30: Connection diagram for digital input

Fig. 31: Connection diagram for encoder inputs

5.3.4 "Serial" connection

You can choose whether to configure the pins 6 to 9 as RS-232 or as RS-422. PROJECT TREE, LMS400-XX00, INTERFACE, SERIAL, area SERIAL HOST, option HARDWARE

	-		
	Pin	Signal	Function
	1	V _S	Supply voltage Sensor
	2	RxD	Receiver RS-232 Aux
	3	TxD	Sender RS-232 Aux
	4	Reserved	Do not use!
	5	GND	Ground Sensor
	6	RD+	Receiver+ RS-422 Host
	7	RD-/RxD	Receiver- RS-422/RS-232 Host
11 15	8	TD+	Sender+ RS-422 Host
	9	TD-/TxD	Sender- RS-422/RS-232 Host
	10	Reserved	Do not use!
	11	Reserved	Do not use!
	12	Reserved	Do not use!
	13	Reserved	Do not use!
	14	Reserved	Do not use!
	15	Reserved	Do not use!
	Housing	-	Screen/earth

Tab. 22: Pin assignment of the "Serial" connection (D-Sub-HD male connector)

Fig. 32: Connection of RS-232 or RS-422 interface

5.4 Connection via connection module or plug cover

To quickly connect the LMS400 to a host or a PLC in a manner suitable for industrial use, the LMS400 can be connected using a connection module (CDM490) and/or a plug cover (e.g. No. 2030439 oder No. 2030535) can be connected. Since the plug cover covers the electrical connections of the LMS400, IP 65 degree of protection is achieved.

Fig. 33: Example of a plug cover

Parameter memory

The plug cover contains a parameter memory. The connection module can be extended using a parameter memory. The parameter memory makes it easy to replace an LMS400. The configuration is stored in this memory and transmitted to the newly connected LMS400 after replacement.

The **S2-Mode** rotary switch defines whether the parameter memory in the plug cover is used:

- Set the switch to the **F** position to use the parameter memory.
- > Set the switch to the **0** position to not use the parameter memory.

Notes

- Only replace the LMS400 with a device with the same firmware version. Only then is it ensured that all parameters are transferred to the new device connected.
 - If the parameter memory contains settings for the Ethernet interface, these settings are not effective immediately on transfer to the new LMS400. The transfer of the Ethernet parameters to the LMS400 is similar to changing the parameters. For this reason the LMS400 must first be reset (see 2.5 "Quick stop and Quick restart" on page 18).
 - The parameter set stored in the parameter memory always overwrites the configuration of the LMS400. An already configured device, for example, is reset to factory settings by a new plug cover.
 - Special Ethernet cables are required to connect the plug cover (see 11.15 "Ordering information" on page 139).

A detailed description of the electrical connections of the plug cover can be found in Document No. 8010817 - "Plug Covers for Volume Measurement System VMS400/500 and Laser Measurement Sensor LMS400".

5.5 Performing the electrical installation

5.5.1 Overview of the connection steps

- Connecting the voltage supply.
- Connect host interface.
- Connect PC (connect aux interface).

5.5.2 Equipment

- tool set
- digital multimeter (current/voltage measurement)

5.5.3 Connecting the voltage supply

- **Note** You can connect the supply voltage alternatively at the "I/O" connection or the "Serial" connection.
 - 1. Ensure that the supply voltage is switched off.
 - 2. Connect the 24 V input "Supply voltage" on the LMS400 to the corresponding connection on the voltage supply using a cable.

5.5.4 Connect PC

The LMS400 is operated and configured using the SOPAS ET configuration software.

- 1. Switch off PC and supply voltage.
- 2. Connect the PC and the aux interface of the LMS400 using a three-core RS-232 data cable (null modem cable).
- 3. Switch on PC and supply voltage.
- 4. Configure (see chapter 7 "Configuration (parameterisation)" on page 65).

6 Commissioning

Commissioning requires a thorough check by qualified personnel!

Before you operate a system equipped with the LMS400 laser measurement sensor for the first time, make sure that the system is first checked and released by qualified personnel. On this issue, observe the notes in chapter 2 *"For your safety" on page 13.*

Overview of the commissioning steps

- 1. Mounting the LMS400 (see chapter 4 "Mounting" on page 55).
- 2. Performing the electrical installation (see chapter 5 *"Electrical installation" on page* 58).
- 3. Configuring LMS400 using the SOPAS ET configuration software (see chapter 7 "Configuration (parameterisation)" on page 65).

Note The RS-232 and RS-422 host interfaces cannot be used simultaneously during operation.

7 Configuration (parameterisation)

Note Software access to the LMS400 is password protected. Following completion of the configuration, you should change the password so that it can perform its protective function.

Firmware	User level	Password
V 1 20 or higher	Maintenance personnel	main
V 1.20 OF Higher	Authorized client	client

Tab. 23: Passwords

You can configure the LMS400 laser measurement sensor in two ways:

- interactively using the provided SOPAS ET configuration software This section describes the interactive configuration.
- using configuration telegrams
 On this topic please read section 3.12 "Data communication using telegrams" on page 50 and refer to section 11.2 "Overview of the telegrams" on page 81.

The interactive configuration is carried out using the provided SOPAS ET configuration software. Using this configuration software, you can configure and test the measurement properties, the analysis behaviour and the output properties of the sensor as required.

Help for the program user interface as well as for the different options can be found in SOPAS ET:

- menu HELP, HELP: Comprehensive online help for the program interface and the different options
- HELP window (on the bottom left in the program user interface): Context sensitive help for the visible dialog
- tool tips: Move the mouse pointer over an input field. A short text ("tool tip") with information about valid entries appears.

7.1 Configuration for measured value output

To configure the LMS400 laser measurement sensor, you need:

- SOPAS ET configuration software (not included in scope of delivery)
- PC/notebook (Windows 98, NT 4.0, 2000, XP, Vista, 7, 8 or 10) with Ethernet interface (RJ45) and optional serial interface (RS-232).
 Device not included in scope of delivery.
- Optional for configuration via serial interface (RS-232): a three-core RS-232 connection cable (null modem cable) for connecting PC and LMS400. Cable not included in scope of delivery.

How to prepare the configuration:

- Make sure that the LMS400 laser measurement sensor has been correctly mounted and that the electrical connections are correct and in place.
- Plan all required settings (operating modes, beam coding, resolution, measured value filtering, trigger etc.).
- Connect the PC/notebook with the aux interface of the LMS400. The connection of the PC is described in section 5.5.4 "Connect PC" on page 63.
- > Install the provided SOPAS ET configuration software.

Note The second generation of SOPAS ET (version 2.38.3) can continue to be used, although support for it is no longer being provided. To receive updates or support, please use the latest version, i.e., the third generation of SOPAS ET (version 3.xx).

Download and installation of SOPAS ET

The configuration software SOPAS ET, the current system prerequisites for the PC, and the instructions for downloading the software and the device description file(s) can be found in the Web at: www.sick.com/sopas.

- 1. Start PC.
- 2. Download and install version V3.x of the SOPAS ET configuration software from the online product page for the software by following the instructions provided there. Administrator rights may be required on the PC to install the software.
- 3. Start the "SOPAS ET" program option after completing the installation. Path: C:\Program Files (x86)\SICK\SOPAS ET\SopasET.exe or via Windows search.
- 4. Install the device driver (SDD) in the device catalog using the wizard (gear symbol). The *.jar file can be obtained from the online repository if an Internet connection is present.
- 5. In the device search list, establish a connection between SOPAS ET and the LMS400 using the search settings. To do this, select the LMS4xx family of devices and select the default IP address 192.168.0.1 when connecting for the first time. The device is detected and can now be integrated into a project for configuration purposes.
- The installation file for SOPAS ET and the *.jar file for the device driver can also be Note exported to a data card in order to install them on another PC when there is no Internet connection.
 - The LMS4xx does not support Automatic Private IP Addressing (auto-IP). For this reason, the device is not detected by the default search. To ensure the device search is successful, the correct IP address and a sufficiently precise address range must be specified. It is possible to save a search setting that has been set up specifically for this purpose under a separate name (default: IP address = 192.168.0.1, subnet mask = 255.255.255.0).

7.1.1 Performing the configuration

Use the project tree in SOPAS ET to configure the parameters necessary for your application.

- 1. Start the SOPAS ET configuration software user interface.
- 2. On the file card SCAN ASSISTANT click on CONFIGURATION; Select interface and configure (use CoLa-A for CoLa protocol).
- 3. Click on SCAN DEVICES, select device from SUITABLE DEVICE TYPES.
- 4. From the OPTIONS menu select the LOGIN DEVICE command and log in to the system using the password "client" as AUTHORIZED CLIENT.

Do not switch off the voltage supply during configuration!

Switching off the voltage supply during configuration causes all parameters already configured to be lost.

- 5. Configure the LMS400 for the required application with the aid of the parameters in SOPAS ET.

Help for the program user interface as well as for the different options can be found in SOPAS ET.

7.1.2 Connection and test measurement

Use the graphic scan view in SOPAS ET to verify the measured values generated and to verify the measurement area online.

- 1. In the LMS400-XX00 project tree, choose MONITOR, SCAN VIEW.
- 2. In order to start the measurement, click on PLAY.
- 3. Compare the measurement line with the desired result.

Notes

- The SCAN VIEW in the MONITOR is dependent on the available computing power of the PC and is **not** output in real-time. For this reason not all measured values are displayed. The same limitation also applies when saving measured values displayed in a file.
- The monitor displays the measured values **unfiltered**, i.e. the action of filters can **not** be checked with the aid of the monitor.
- 4. After completing the test measurement successfully, save the configuration permanently to the LMS400: Menu LMS400_XX00, PARAMETER, SAVE PERMANENT.

7.2 Configuration and adjustment for Level Control

For the configuration and adjustment of the LMS400 for the Level Control application you require:

- plumb line
- carpenter's square
- measuring tape (up to 3000 mm resp. 118.11 in)
- felt-tip pen (the colour should be quite different from that of the transporting surface)
- tool set

 \geq

- white adhesive tape for black transporting surfaces
- cuboid body

How to prepare the adjustment:

Switch off the laser control of the LMS400. PROJECT TREE, LMS400-XX00, PARAMETER, DIGITAL INPUTS/TRIGGER, area LASER CONTROL

This switches the laser of the LMS400 permanently on; the scan line of the LMS400 is now visible and the LMS400 can be adjusted.

7.2.1 Adjustment of the angle γ

Adjust the mounting kit such that the middle of the sensor is exactly over the middle of the conveyor system. For this purpose, a plumb line can be attached to the adjusting screw used to adjust angle γ.

> Adjust the angle γ to 0°.

7.2.2 Adjustment of the angle β

- 1. Place a cubic object on the outside edge of the conveyor system. The scan line must be visible on the side of the cube.

Fig. 35: Adjustment of the angle β

7.2.3 Adjustment of the angle α

- Using a felt-tip pen draw a line (direction vector) in the transporting direction. For this purpose start the conveyor system and hold the felt-tip pen on the moving surface.
- Align the scan line of the LMS400 at a right angle with the line on the conveyor system. A carpenter's square can be placed along the line on the conveyor system for this purpose.

Fig. 36: Adjustment of the angle α

7.2.4 Determining the coordinates using the installation setup

There is an installation setup for the configuration of the position of the LMS400. There you will find detailed step-by-step instructions on commissioning.

Note To be able to use the installation setup, the LMS400 must be able to scan the transporting surface. Apply, for example, a piece of white tape along the scan line on a black surface.

7.2.5 Defining the angle γ , the y and the z coordinates

- Start the assistant on the LMS400_XX00 menu, COMMISSIONING, START INSTALLATION HELP.
- Enter the GAMMA, Y COORDINATE AND Z COORDINATE parameters (see Fig. 37). A rough entry is sufficient. The assistant will determine the exact parameters during the subsequent steps.

Fig. 37: Angle γ and y coordinate and z coordinate

7.2.6 Defining the transporting surface

In the next step the assistant scans the surrounding contour and displays the scan line seen. However, the assistant cannot yet identify which part of the scan line corresponds to the transporting surface.

You therefore define the position of the transporting surface by marking it.

Position two marks using the right mouse button (M1 and M2) (see Fig. 38 ①). Ensure the marks are as close as possible to the edges of the surface of the conveyor but not on the side limits of the conveyor system.

Fig. 38: Example of a scanned conveyor system

> In the assistant, click on CALCULATE. The angle γ and the z coordinate are calculated and the scan line drawn horizontally in the diagram (see *Fig.* 38 ②).

7.2.7 Defining the y coordinate

> Place the test object on end on the left side of the transporting surface.

Fig. 39: Entry of the distance from the zero point

In the next step in the assistant enter the DISTANCE FROM THE ZERO POINT, the WIDTH OF OBJECT and the HEIGHT OF OBJECT.

Note The test object is 200 mm (7.87 in) wide and 300 mm (11.81 in) high. You must measure the distance from the zero point.

The assistant scans the surrounding contour and displays the scan line seen. However, the assistant cannot identify which part of the scan line corresponds to the test object.

Define on the scan line which part of the surrounding contour on the right side corresponds to the object. For this purpose position two marks using the right mouse button (see Fig. 40, part 1).

Fig. 40: Scanned test object

▶ In the assistant, click on CALCULATE.

The assistant now wraps the scan line around the test object (see *Fig. 40*, part 2) and calculates the distance from the LMS400 to the zero point and therefore its y coordinate.

7.2.8 Applying the parameters

Finally, the assistant displays the new parameters. If you apply the new parameters, they will be saved in the device.

Note

The values are not yet displayed on the SOPAS ET user interface in PARAMETER, POSITION. The values are only displayed after the data have been uploaded from the device.

COMMUNICATION menu, command UPLOAD ALL PARAMETERS FROM DEVICE

8 Maintenance

8.1 Maintenance during operation

The LMS400 laser measurement sensor is maintenance-free apart from the maintenance measures listed below. No maintenance is necessary to ensure the retention of laser class 2.

Recommendation To preserve the full optical power of the LMS400, the front screen and any additional front screen should be regularly checked for contamination. This applies particularly in harsh operating environments (dust, powder, moisture, finger marks).

Damage to the eye from laser radiation!

The LMS400 uses a red laser of class 2. On extended beam exposure, the retina in the eye may be damaged.

The entire front screen serves as the laser output aperture.

Warning — inappropriate use of the LMS400 can result in hazardous exposure to radiation and the laser class may be exceeded.

- Never look directly into the beam (similar to sunlight).
- > Do not point the device laser beam at people.
- During mounting and adjustment of the LMS400, pay attention to possible reflections of the laser beam on reflective surfaces.
- Do not open the housing. (Opening the housing does not interrupt the power to the laser diode during the read cycle.)
- Observe the latest valid version of the laser safety regulations.

Front screen damaged!

The front screen is made of glass. The optical power is reduced by scratches and smearing on the front screen.

- Do not use aggressive detergents.
- Do not use abrasive cleaning agents.
- > Avoid scratching and scouring movements on the front screen.

Note Static charges cause dust particles to be attracted to the front screen. You can prevent this effect by using the antistatic plastic cleaner (SICK Part No. 5600006) and the SICK lens cloth (Part No. 4003353).

How to clean the front screen:

- Use a clean and soft brush to remove dust from the front screen.
- > Then wipe the front screen with a clean and damp cloth.
8.2 Disposal

After de-commissioning, dispose of unusable or irreparable devices in an environmentally correct manner:

- 1. Observe national waste disposal regulations.
- 2. Dismantle the housing of the LMS400.
- 3. Remove electronics assemblies.
- 4. Send chassis and cover for die-cast aluminium recycling.
- 5. Dispose of all electronic assemblies as hazardous waste.

8.3 Replacement of a sensor

If the sensor has to be replaced, proceed as follows:

- 1. Switch off the voltage supply for the LMS400 and undo the connection.
- 2. Remove the connection cables from the LMS400.
- 3. Undo the three M6 screws (see *Fig. 28 on page 56*) and replace the LMS400.
- 4. Mounting the replacement device (see chapter 4 "Mounting" on page 55).
- 5. Configuring the replacement device (see chapter 7 "Configuration (parameterisation)" on page 65).

9 Troubleshooting

This chapter describes how to identify and rectify errors and malfunctions during the operation of the LMS400 laser measurement sensor.

9.1 In the event of faults or errors

Stop the machine/system if you cannot clearly identify or allocate the error and if you cannot safely rectify the malfunction.

Cease operation if the cause of the malfunction has not been clearly identified!

9.2 Error on beam generation

The LMS400 automatically monitors the generation of the beam and automatically shuts down the laser diode in case of irregularities. In this case:

- The LED "Device Ready" turns red.
- The scanner transmits no more measured values.

To cancel error status:

- Switch the LMS400 off and back on again.
- If the error is still present when the device is switched on again, check the device status using SOPAS ET (see 9.3.1). If errors are listed there, please contact SICK service.

9.3 Detailed error analysis

The LMS400 outputs occurring errors in various ways. Errors are output in stages and always permit detailed analysis:

- Communication errors can occur on the transfer of telegrams to the LMS400. The LMS400 then returns an error code.
- In case of status errors occurring during a scan, error codes are written to a status log. The sensor status is then set to 1 in the measured value telegram (see 11.3.1 on page 84), so that your application can react appropriately.

9.3.1 Querying status log

Notes

• The status log is retained also after the device is switched off and on again.

• The LMS400 differentiates between four error types: "Information", "Warning", "Error" and "Serious error" (see 11.13 "Error codes" on page 132). For each error type, the system saves only the last five occurrences.

Displaying log with the aid of SOPAS ET

You can display this logfile using SOPAS ET:

- Connect SOPAS ET to the device.
- > Open the project tree LMS400-XX00, SERVICE, SYSTEM STATUS, area SYSTEM STATUS.

Reading status log with the aid of telegrams

You can also read the status log with the aid of telegrams. One telegram is available for each of the four different types of error (see 11.12 "Reference status log telegrams" on page 129).

- 1. The terminal sends a telegram, comprising the command **sRN** (SOPAS read by name) and the telegram name.
- 2. The LMS400 sends a reply comprising **sRA** (SOPAS write answer) the telegram name, an error code (00000000 = no error) for the information, warnings, errors or serious errors.

Fig. 41: Use of variables for configuration

10 Technical specifications

10.1 Data sheet LMS400 laser measurement sensor

Note The information in the data sheet relate to the measured value quality 7 (see "*Measured value quality*" *on page 29*). If the measured value quality determined from the parameters is <7, the sensor is no longer compliant with the values given in the technical data. If the measured value quality is ≥7, the technical data apply.

Туре	LMS400-1000	LMS400-2000		
Version	1 scanner solution			
Detectable object shape	Almost any, for restrictions see section 3.3.2 "Object specifications" on page 20			
Useful field of view	Max. 70°			
Working area	0.7 to 3 m (2.3 to 9.8 ft)			
Laser output aperture	On front			
Laser diode (wavelength)	Visible light (λ = 650 nm	. 670 nm)		
Laser power	Max. 7.5 mW	Max. 10 mW		
Laser class of the device	2			
Scanning frequency	180 Hz 500 Hz	270 Hz 500 Hz		
Resonse time	≥ 2 ms			
Angular resolution	Choosable from 0.1333 to	1°		
Angular error	±0.1°			
Typical measuring error ¹⁾				
Systematic measuring error	±4 mm (±0.16 in)			
Statistical measuring error	±3 to ±10 mm (±0.12 to ±	0.39 in)		
	(depending on remission a	nd distance, see		
	section 3.6.1 "Measuring a	accuracy of the distance		
	measurement" on page 27	⁷)		
Object remission	6.5 % to 200%	4.5 % to 100%		
External light tolerance	2,000 lx			
Optical indicators	6 LEDs			
Switching inputs	4 x digital, encoder inputs	IN2 and IN4:		
	$V_{in} = 24 \text{ V}, F_{max} = 10 \text{ kHz}$			
Switching outputs ²⁾	4 x digital, I_{out} = max. 400	mA		
	1 x analog, I _{out} = 4 mA 2	20 mA		
Aux interface	RS-232			
Host interfaces	1 x RS-232, RS-422 (data	output format can be		
	adjusted)	If duplay)		
Electrical connections	1 X Ethemet (10bdse-1, 1d			
	2 × 0-pin RJ-45 lemale cor	onnector		
	1×15 -pin D-Sub male connector			
Supply voltage/power	24 VDC + 15%/max 25 W			
consumption				
Housing	Aluminium die-cast (on the exterior no materials that			
	make usage of silicone)			

Tab. 24: Data sheet LMS400 laser measurement sensor

Туре	LMS400-1000	LMS400-2000			
Housing colour	Light blue (RAL 5012)				
Material of front screen	Float glass	Float glass			
	LMS400-1000S02:				
	Polycarbonate 3)				
EMC test	As per EN 61000-6-2:2	2001, EN 61000-6-4:2001			
Vibration/shock test	As per EN 60068-2-6,	-27, -29, -64			
Electrical safety	As per EN 61010-1-3:2	As per EN 61010-1-3:2001			
Protection class	III, as per EN 61040-3	2002			
Enclosure rating	IP 20 (as per EN 6052	9-10-1991); with plug cover			
	IP 65				
Weight	Approx. 2.3 kg (5.1 lb)				
Ambient temperature	Operation: 0 °C +40	Operation: 0 °C +40 °C (32 °F +104 °F)			
	Storage: -20 °C +70	Storage: -20 °C +70 °C (-4 °F +158 °F)			
Air humidity	Max. 90%, non-conder	Max. 90%, non-condensing			

Tab. 24: Data sheet LMS400 laser measurement sensor

1) The information applies with the following boundary conditions: Room temperature 20 $^{\circ}\text{C}$

The LMS400 has been switched on for at least two hours.

Measuring distance, operating ambient temperature and object remission must be inside the specified range. The intensity of light from external sources is ≤ 2 kLux.

2) If a load is not connected to the outputs, the outputs will exhibit tristate behavior. Normal switching behavior is achieved on the termination with 10 kOhm.

3) Used in order to prevent fragments of glass being produced in the event of mechanical damage (in food applications, for instance). Plastic panes have a higher optical attenuation value than glass panes. This may result in a reduction in the measurement accuracy and detection capacity of the device as compared with the standard variant.

10.2 Dimensional drawings

Other sensors on request.

10.2.2 Dimensional drawing mounting kit No. 2030421 for LMS400

Fig. 43: Dimensional drawing mounting kit for LMS400 laser measurement sensor

11 Annex

11.1 Overview of the annexes

The annex contains the following supplementary information:

- Overview of the telegrams
- Reference measured value telegrams
- Reference configuration telegrams for the basic measurement parameters
- Reference general configuration telegrams
- Configuration telegrams for master/slave operation
- Reference configuration telegrams for filter setting
- Reference configuration telegrams for triggering
- Configuration telegrams for the host interface
- Configuration telegrams for the Ethernet interface
- Reference status log telegrams
- Reference measured value telegrams
- Error codes
- Ordering information
- Hints on EU Declaration of Conformity
- Glossary

11.2 Overview of the telegrams

The following table provides an overview of the telegrams that the LMS400 can use to communicate. In the User level column you will find the lowest user level required to use the telegram:

0 = No user level

1 = Machine operator

2 = Maintenance personnel

3 = Authorized client

Telegram name	Telegram type	User level	See
Telegrams for querying measured	values		
Continuous measured value	Procedure	0	11.3.1 on page 84
output			
Triggered measured value output	Procedure	0	11.3.2 on page 87
Output defined number of scans	Variable	0	11.3.3 on page 88
Stop measurement	Procedure	0	11.3.4 on page 89
Telegrams for setting the basic pa	arameters for th	e measureme	nt
Configuration of the scanning	Procedure	0	11.4.1 on page 90
frequency and angular resolution			
Configuration by defining the	Procedure	0	11.4.2 on page 92
scanning frequency			
Configuration by defining the	Procedure	0	11.4.3 on page 94
angular resolution			
Enable extended RIS detectivity	Variable	0	11.4.4 on page 95
Telegrams for general device sett	ings		
Select user level	Procedure	0	11.5.1 on page 96
Query user level	Procedure	0	11.5.2 on page 98
Set password	Procedure	2 to 3	11.5.3 on page 99
Set device name	Variable	2	11.5.4 on page 100
Save parameters permanently	Procedure	3	11.5.5 on page 101
Terminate configuration	Procedure	0	11.5.6 on page 102
Reset device	Procedure	3	11.5.7 on page 103
Place device in delivery status	Procedure	3	11.5.8 on page 104
Telegrams for master/slave opera	ation	•	
Select synchronisation type	Variable	3	11.6.1 on page 105
Define phase	Variable	3	11.6.2 on page 105
Telegrams to set filters			
Enable filter	Variable	2	11.7.1 on page 106
Define median filter	Variable	2	11.7.2 on page 107
Define range filter	Variable	2	11.7.3 on page 107
Define mean filter	Variable	2	11.7.4 on page 108
Telegrams for triggering	L	I	
Time or distance controlled	Variable	4	11.8.1 on page 109
Define digital inputs	Variable	3	11.8.2 on page 110
Define the gate settings	Variable	3	11.8.3 on page 111
Enable laser control	Variable	3	11.8.4 on page 112
Select the encoder settings	Variable	3	11.8.5 on page 113

Telegram name	Telegram type	User level	See				
Telegrams for the configuration of the outputs							
Enable outputs	Procedure	4	11.9.1 on page 114				
Telegrams for the configuration of the host interface							
Select hardware setting	Variable	3	11.10.1 on page 115				
Select baud rate	Variable	3	11.10.2 on page 116				
Select number of stop bits	Variable	3	11.10.3 on page 117				
Select data and parity bits	Variable	3	11.10.4 on page 118				
Select block check byte setting	Variable	3	11.10.5 on page 119				
Select receive start character	Variable	3	11.10.6 on page 120				
Select receive stop character	Variable	3	11.10.7 on page 121				
Select send start character	Variable	3	11.10.8 on page 122				
Select send stop character	Variable	3	11.10.9 on page 123				
Telegrams for the configuration o	f the Ethernet ir	terface					
Define IP address	Variable	3	11.11 on page 124				
Define gateway address	Variable	3	11.11.2 on page 125				
Define subnet mask	Variable	3	11.11.3 on page 125				
Define port for the TCP/IP	Variable	3	11.11.4 on page 126				
communication							
Read MAC address	Variable	0	11.11.5 on page 127				
Select format for the CoLa protocol	Variable	3	11.11.6 on page 128				
Telegrams for querying status							
Query warnings	Variable	0	11.12.1 on page 129				
Query errors	Variable	0	11.12.2 on page 130				
Query serious errors	Variable	0	11.12.3 on page 131				
Telegrams Level Control	Telegrams Level Control						
Start measured value output for	Variable	0	11.14.1 on page 132				
Level Control							
Stop measured value output for	Variable	0	11.14.2 on page 138				
Level Control							

Tab. 25:Overview of the measured value and configuration telegrams

Notation

The individual telegram sections are each to be separated by a space (ASCII code 32, hex 20). The LMS400 interprets the parameters transferred as follows:

- Parameters with a leading "+" or "-" are interpreted as a decimal value (ASCII notation).
- Parameters without a leading "+" or "-" are interpreted as a hexadecimal value (ASCII notation).
- The LMS400 interprets each parameter individually, i.e. the different notations can be mixed within a telegram.
- All the examples used in the following telegram lists refer to the Cola-A protocol.

Variable types

The variable types are given in the telegram syntax, the following variable types are possible:

Variable type	Length (byte)	Value range	Sign
bool_1	1	0 or 1	No
uint_8	1	0 255	No
int_8	1	-128 127	Yes
uint_16	2	0 65535	No
int_16	2	-32768 32767	Yes
uint_32	4	0 4294967295	No
int_32	4	-2147483648 2147483647	Yes
float_32	4	$\pm \sim 10^{-44.85} \dots 10^{38.53}$	Yes
string	Context-	Note: Strings are terminated with	
	dependent	non-zero characters	

Tab. 26: Variable types

Notes

- The information in the "Length" column of the table refers to the binary transfer of the numeric parameters.
- The information in the "Value range" column in the table refers to the value range mathematically possible for the variable type. The actual value ranges for the parameters may be different. You will find these in the telegram syntax that follows.

Syntax error

If the LMS400 detects an error in the syntax of a received telegram, it outputs an error telegram with an error code.

Telegram structure:	sFA ErrorCode
---------------------	---------------

Telegram part	Description	Variable type	Length (byte)	Value range
Type of command	Syntax error or logical error	string	3	sFA
ErrorCode	Contains the error type (see <i>Tab. 27</i>)	uint_16	2	FF00h FFFFh

Telegram syntax 1: Syntax error or logical error

ErrorCode	Possible cause	Solution
FF79h	Unknown name	The procedure or parameter name used is unknown. Check for spelling mistakes.
FFC8h FFC9h	User level too low	A higher user level is required to access the procedure or parameter. Change to required user level (see 11.5.1 on page 96).
FF??h	General syntax error	Check telegram syntax: Type of command, command, parameter number and parameter value range

Tab. 27: Syntax error or logical errors

11.3 Reference measured value telegrams

11.3.1 Continuous measured value output

Continuous measured value output is started using this telegram (see *Fig. 5 on page 23*). Distance and remission values, only distance values or only remission values can be queried from the LMS400. Additional, expanded information on the measured values as well as the state of the I/O is transferred in the resulting cyclic data (measured values).

Request

Telegram structure:

sMN mLRreqdata Format

Telegram part	Description	Variable type	Length (bvte)	Value range	
Type of command	Request (SOPAS method by name)	string	3	sMN	
Command	Data request	string	10	mLRreqd	lata
Format	Defines content and size of the measured values telegram	uint_16	2	0020h distance and remission	
				0021h distance only	
				0022h	remission only

Telegram syntax 2:

Request "Continuous measured value output"

Confirmation

Telegram structure: sMA mLRreqdata

Telegram part	Description	Variable type	Length	Value range
			(byte)	
Type of command	Confirmation (SOPAS method acknowledge)	string	3	sMA
Command	Data request	string	10	mLRreqdata

Telegram syntax 3: Confirmation of the "Continuous measured value output" request

Answer

Telegram structure: sAN mLRreqdata ErrorCode

Telegram part	Description	Variable type	Length	Value range
			(byte)	
Type of command	Answer (SOPAS answer)	string	3	sAN
Command	Data request	string	10	mLRreqdata
ErrorCode	The command has been accepted if the error code 0 is	uint_32	4	00000000h no error
	returned.			FFFFFFFh ErrorCode

Telegram syntax 4: Answer to the "Continuous measured value output" request

Cyclic data (measured values)

- **Note** The contents of this telegram are sent in Little Endian format. Every telegram contains a complete scan line with all measured values.
 - Telegram structure:Format DistanceScaling StartingAngle AngularStepWidth
NumberMeasuredValues ScanningFrequency RemissionScaling
RemissionStartValue RemissionEndValue Distance_1
RemissionValue_1 [Distance_2 RemissionValue_2 ... Distance_n
RemissionValue_n] DigitalInputs ReservedBytesA ReservedBytesB
EncoderPosition ReservedBytesC ReservedBytesD ScanCounter
TelegramCounter SystemCounter

Tel	egram part	Description	Variable type	Length	Value range
				(byte)	
	Format	Defines content and size of the	uint_16	2	0020h distance and
		measured values telegram			remission
					0021h distance only
					0022h remission only
	DistanceScaling	Scaling of the distance values.	uint_16	2	1
		The distance values are to be			
×		multiplied by this factor.			
oloc	StartingAngle	Information 1/10 000 degree	int_32	4	550000 1250000
on	AngularStepWidth	Information 1/10 000 degree	uint_16	2	1000 10000
initi	NumberMeasuredValues	Number of measured values in	uint_16	2	0 700
Defi		telegram			
—	ScanningFrequency	Information in Hertz	uint_16	2	100 500
	RemissionScaling	Scaling for the remission value.	uint_16	2	2
		The remission values are to be			
		multiplied by this factor.			
	RemissionStartValue	Lower or upper limit for the	uint_16	2	0
	RemissionEndValue	remission value without	uint_16	2	255
		scaling. Information in percent			
	Distance_1	Information in millimetres. The	uint_16	2	0000h invalid
		distance value is to be			01F4h 500 mm
		multiplied with the			
		DistanceScaling.			0BB8h 3000 mm
les		Output is dependent on the			
valu		"Format" parameter.			
ed	RemissionValue_1	The remission value is to be	uint_8	1	0 254 remission
Insi		multiplied with			255 glare
Mea		RemissionScaling.			
~		Output is dependent on the			
		"Format" parameter.			
	Distance_n	See above	uint_16	2	See above
	RemissionValue_n	See above	uint_8	1	See above

Tel	egram part	Description	Variable type	Length	Value range
				(byte)	
	DigitalInputs	The least significant byte	uint_16	2	0000h all inputs off
		reflects the state of the digital			000Fh all inputs on
		inputs by bit. The least			
		significant bit corresponds to			
sr		input 1.			
/0 statı	ReservedBytesA	Reserved	uint_16	2	0000h
_	ReservedBytesB	Reserved	uint_16	2	0000h
	EncoderPosition	Information in ticks	uint_16	2	0000h FFFFh
	ReservedBytesC	Reserved	uint_16	2	0000h
	ReservedBytesD	Reserved	uint_16	2	0000h
	ScanCounter	Counter, starting with the first	uint_16	2	0000h 0
		scan after confirmation of the			0FFFh 4095
		measured value telegram.			
		When the upper limit is			
		reached, the counter starts			
		again at 0 (= 1. scan).			
	TelegramCounter	Counter, starting at the first	uint_16	2	0000h 0
ns		measured value telegram			FFFFh 65535
tat		(cyclic data) after confirmation			
ors		of the measured value			
ense		telegram. When the upper limit			
Š		is reached, the counter starts			
		again at 0 (= 1. telegram).			
	SystemCounter	Enables the relative time	uint_16	2	0000h 0 μs
		difference between two			FFFFh 21.4745 s
		measured value telegrams to			
		be calculated. Information in			
		$1/327.68 \ \mu s.$ When the upper			
		limit is reached, the counter			
		starts again at 0.			

Telegram syntax 5:

Cyclic data (measured values) in the maximum telegram

Note If the measured value quality is <7, then you are operating the sensor outside the specification. On this subject please read section 3.6.4 "*Measured value quality*" on page 29.

Request:	sMN mLRreqdata 0020
Confirmation:	sMA mLRreqdata
Answer:	sAN mLRreqdata 00000000
Cyclic data:	(see Tab. 5)

11.3.2 Triggered measured value output

The measurement/output of data only starts when a trigger is present (see 3.5.2 "Control of the measurement process using a gate" on page 24). The following types of triggering are possible:

- hardware triggering using digital inputs
- software triggering using telegram with defined number of scans (see 11.3.3)

The measured values output ends automatically when the trigger is no longer present or the cyclic output is stopped using the "Stop measurement" command (see 11.3.4).

Distance and remission values, only distance values or only remission values can be queried from the LMS400. Additional, expanded information on the measured values as well as the state of the I/O is transferred in the resulting cyclic data (measured values).

Request

Telegram structure:

sMN mLRreqtrigdata Format

Telegram part	Description	Variable type	Length (byte)	Value ran	ge
Type of command	Request (SOPAS method by name)	string	3	sMN	
Command	Data request	string	14	mLRreqtr	rigdata
Format	Defines content and size of the measured values telegram	uint_16	2	0020h	distance and remission
				0021h	distance only
				0022h	remission only

Telegram syntax 6: Request "Triggered measured value output"

Confirmation

Telegram structure:

sMA mLRreqtrigdata

Telegram part	Description	Variable type	Length (byte)	Value range
Type of command	Confirmation (SOPAS method acknowledge)	string	3	sMA
Command	Data request	string	14	mLRreqtrigdata

Telegram syntax 7: Confirmation of the "Triggered measured value output" request

Answer

Telegram structure: sAN mLRreqtrigdata ErrorCode

Telegram part	Description	Variable type	Length	Value range
			(byte)	
Type of command	Answer (SOPAS answer)	string	3	sAN
Command	Data request	string	14	mLRreqtrigdata
ErrorCode	The command has been accepted if the error code 0 is returned.	uint_32	4	00000000h no error FFFFFFFFh ErrorCode

Telegram syntax 8: Answer to "Triggered measured value output" request

Cyclic data (measured values)

See "Cyclic data (measured values)" on page 85.

Example

Request:	sMN mLRreqtrigdata 0020
Confirmation:	sMA mLRreqtrigdata
Answer:	sAN mLRreqtrigdata 00000000
Cyclic data:	(see Tab. 5 on page 86)

11.3.3 Output defined number of scans

If you have initiated triggered measured value output (see 11.3.2 on page 87), this telegram results in the activation of measured data output for a specific number of scans. For this purpose the telegram is transferred with a parameter that defines how many measured value telegrams are to be output.

Note A prerequisite is that software trigger is selected in the trigger settings as the trigger source (see 11.8.3 on page 111).

As an alternative to configuration with telegrams, you can also make the trigger settings in

SOPAS. PROJECT TREE, LMS400-XX00, PARAMETER, DIGITAL INPUTS, area GATE SETTINGS

Telegram structure:

Request

sWN LRscnt Number

Telegram part	Description	Variable type	Length (byte)	Value ran	ge
Type of command	Request (SOPAS write by name)	string	3	sWN	
Command	Output defined number of scans	string	6	LRscnt	
Number	Number of measured values that are to be output	uint_16	2	0001h 000Ah	1 scan 10 scans

Telegram syntax 9: Request "Output defined number of scans"

Answer

Telegram structure:

sWA LRscnt

Telegram part	Description	Variable type	Length	Value range
			(byte)	
Type of command	Answer (SOPAS answer)	string	3	sWA
Command	Output defined number of	string	6	LRscnt
	scans			

Telegram syntax 10: Answer to the "Output defined number of scans" request

Example

sWN LRscnt 0001 Request: Answer: sWA LRscnt

11.3.4 Stop measurement

Request

Telegram structure:

Telegram part	Description	Variable type	Length (byte)	Value range
Type of command	Request (SOPAS method by name)	string	3	sMN
Command	Stop measurement	string	11	mLRstopdata

Telegram syntax 11: Request "Stop measurement"

Answer 1 (confirmation)

Telegram structure:

sMA mLRstopdata

sMN mLRstopdata

Telegram part	Description	Variable type	Length	Value range
			(byte)	
Type of command	Confirmation (SOPAS method acknowledge)	string	3	sMA
Command	Stop measurement	string	11	mLRstopdata

Telegram syntax 12: Confirmation of the "Stop measurement" request

Answer 2 (result)

Telegram structure: sAN mLRstopdata

Telegram part	Description	Variable type	Length	Value range
			(byte)	
Type of command	Answer (SOPAS answer)	string	3	sAN
Command	Stop measurement	string	11	mLRstopdata
ErrorCode	The command has been accepted if the error code 0 is returned.	uint_32	4	00000000h no error FFFFFFFFh ErrorCode

Telegram syntax 13: Answer to the "Stop measurement" request

Request:	sMN mLRstopdata
Confirmation:	sMA mLRstopdata
Answer:	sAN mLRstopdata 00000000

11.4 Reference configuration telegrams for the basic measurement parameters

There are three ways of defining the angular resolution and scanning frequency:

- configuration of scanning frequency and angular resolution
- configuration by defining the scanning frequency
- configuration by defining the angular resolution

The configuration of the scanner can be different from the parameters transmitted!

The scanner does not apply the basic parameters of scanning frequency and angular resolution exactly, the values must be technically optimised. For this reason, in further calculations during data analysis use the parameters contained in the related response from the scanner.

11.4.1 Configuration of scanning frequency and angular resolution

Configures the scanner by means of the exact definition of scanning frequency and angular resolution. The LMS400 calculates the technically possible values based on these parameters for supplies the parameters actually used in response 2 (result).

Note .

- The required user level is "Authorized client" (see 11.5.1 on page 96).
 - Only transfer suitable scanning frequencies and angular resolutions. You can find the right combination in SOPAS ET with the aid of the scanning frequency wizard.

PROJECT TREE, LMS400-XX00, PARAMETER, BASIC PARAMETER, CURRENT DEVICE PARAMETERS

Request

Annex

Telegram structure:

sMN mSCsetscanconfig ScanningFrequency AngularResolution BeginMeasurementArea LengthMeasurementArea

Telegram part	Description	Variable type	Length (byte)	Value range
Type of command	Request (SOPAS method by name)	string	3	sMN
Command	Configuration of scanning frequency and angular resolution	string	16	mSCsetscanconfig
ScanningFrequency	ls rounded by the LMS400 to an integer multiple of 10. Information in Hertz	float_32	4	+360 +500
AngularResolution	Is rounded to a valid value. Information in degrees	float_32	4	+0.1 +1
BeginMeasurementArea	Information in degrees	float_32	4	+55.00 +124.00
LengthMeasurementArea	Information in degrees	float_32	4	+0.00 +70.00

Telegram syntax 14: Request "Configuration of scanning frequency and angular resolution"

Confirmation

Telegram structure:

sMA mSCsetscanconfig

Telegram part	Description	Variable type	Length (byte)	Value range
Type of command	Confirmation (SOPAS method acknowledge)	string	3	sMA
Command	Configuration of scanning frequency and angular resolution	string	16	mSCsetscanconfig

Telegram syntax 15: Confirmation of the "Configuration of scanning frequency and angular resolution" request

Answer

Telegram structure:

sAN mSCsetscanconfig ErrorCode ScanningFrequency AngularResolution MeasuredValueQuality

Telegram part	Description	Variable type	Length (byte)	Value range
Type of command	Answer (SOPAS answer)	string	3	sAN
Command	Configuration of scanning frequency and angular resolution	string	16	mSCsetscanconfig
ErrorCode	The command has been accepted if the error code 0 is returned.	uint_32	4	00000000h no error FFFFFFFFh
ScanningFrequency	Scanning frequency calculated by the LMS400. Information in Hertz. Displayed as hex value	float_32	4	42C80000h 100.0 43FA0000h 500.0
AngularResolution	Angular resolution calculated by the LMS400. Information in degrees. Displayed as hex value	float_32	4	3DCCCCCDh0.1 3F800000h 1.0
MeasuredValueQuality	Measured value quality calculated by the LMS400. Displayed as hex value	uint_8	1	05h 5 0Ah 10

Telegram syntax 16: Answer to the "Configuration of scanning frequency and angular resolution" request

Note If the measured value quality is <7, then you are operating the sensor outside the specification. On this subject please read section 3.6.4 "*Measured value quality*" on page 29.

Request:	sMN mSCsetscanconfig +300 +0.25 +55.0 +70.0
Confirmation:	sMA mSCsetscanconfig
Answer:	sAN mSCsetscanconfig 00000000 4395C78F 3E800000 07

11.4.2 Configuration by defining the scanning frequency

Configures the scanner by means of the exact definition of a scanning frequency and rough definition of the angular resolution. The LMS400 calculates the technically possible values based on these parameters for supplies the parameters actually used in response 2 (result).

Note It is not necessary to log in to the device **first**, as the login is part of this telegram. To enable the parameters to be applied by the LMS400, as a minimum login as "Maintenance personnel" is necessary.

Request

Telegram structure:

sMN mSCconfigbyfreq UserLevel Password ScanningFrequency RoughSelectionAngularResolution BeginMeasurementArea LengthMeasurementArea

Telegram part	Description	Variable type	Length (byte)	Value range
Type of command	Request (SOPAS method by name)	string	3	sMN
Command	Configuration via scanning frequency	string	15	mSCconfigbyfreq
UserLevel	A valid user level must be included in the transmission. Otherwise the LMS400 rejects the command.	uint_8	1	 02h maintenance personnel 03h authorized client 04h service
Password	Hash value of the password (see 11.5.1 on page 96)	uint_32	4	00000000h FFFFFFFFh
ScanningFrequency	Is rounded by the LMS400 to an integer multiple of 10. Information in Hertz	float_32	4	+360 +500
RoughSelectionAngularReso- lution	Corresponds to the possible selections available in SOPAS	uint_8	1	00h coarse 01h medium 02h fine
BeginMeasurementArea	Information in degrees	float_32	4	+55.00 +124.00
LengthMeasurementArea	Information in degrees	float_32	4	+0.00 +70.00

Telegram syntax 17: Request "Configuration by defining the scanning frequency"

Confirmation

Telegram structure: sMA mSCconfigbyfreq

Telegram part	Description	Variable type	Length	Value range
			(byte)	
Type of command	Confirmation (SOPAS method acknowledge)	string	3	sMA
Command	Configuration via scanning	string	15	mSCconfigbyfreq
	frequency			

Telegram syntax 18: Confirmation of the "Configuration by defining the scanning frequency" request

Answer

Telegram structure:

sAN mSCconfigbyfreq ErrorCode ScanningFrequency AngularResolution MeasuredValueQuality

Telegram part	Description	Variable type	Length	Value range	
			(byte)		
Type of command	Answer (SOPAS answer)	string	3	sAN	
Command	Configuration via scanning frequency	string	15	mSCconfigby	freq
ErrorCode	The command has been	uint_32	4	0000000h	no error
	accepted if the error code 0 is				
	returned.			FFFFFFFh	ErrorCode
ScanningFrequency	Scanning frequency calculated	float_32	4	42C80000h	100.0
	by the LMS400. Information in				
	Hertz. Displayed as hex value			43FA0000h	500.0
AngularResolution	Angular resolution calculated	float_32	4	3DCCCCCDh	0.1
	by the LMS400. Information in				
	degrees. Displayed as hex			3F800000h	1.0
	value				
MeasuredValueQuality	Measured value quality	uint_8	1	05h	5
	calculated by the LMS400.				
	Displayed as hex value			0Ah	10

Telegram syntax 19: Answer to the "Configuration by defining the scanning frequency" request

Note

If the measured value quality is <7, then you are operating the sensor outside the specification. On this subject please read section 3.6.4 "Measured value quality" on

page 29.

Request:	sMN mSCconfigbyfreq 03 B18244B6 +300 +0 +55.0 +70.0
Confirmation:	sMA mSCconfigbyfreq
Answer:	sAN mSCconfigbyfreq 00000000 4395C78F 3ECCCCCD 08

11.4.3 Configuration by defining the angular resolution

Configures the scanner by means of the exact definition of an angular resolution and rough definition of the scanning frequency. The LMS400 calculates the technically possible values based on these parameters for supplies the parameters actually used in response 2 (result).

Note It is not necessary to log in to the device **first**, as the login is part of this telegram. To enable the parameters to be applied by the LMS400, as a minimum login as "Maintenance personnel" is necessary.

Request

Telegram structure:

sMN mSCconfigbyang UserLevel Password AngularResolution RoughSelectionScanningFrequency BeginMeasurementArea LengthMeasurementArea

Telegram part	Description	Variable type	Length (byte)	Value range
Type of command	Request (SOPAS method by name)	string	3	sMN
Command	Configuration via angular resolution	string	14	mSCconfigbyang
UserLevel	A valid user level must be included in the transmission. Otherwise the LMS400 rejects the command.	uint_8	1	 02h maintenance personnel 03h authorized client 04h service
Password	Hash value of the password (see 11.5.1 on page 96)	uint_32	4	00000000h FFFFFFFFh
AngularResolution	Is rounded to a valid value. Information in degrees	float_32	4	+0.1 +1
RoughSelectionScanningFre- quency	Corresponds to the possible selections available in SOPAS	uint_8	1	00h fast 01h medium 02h slow
BeginMeasurementArea	Information in degrees	float_32	4	+55.00 +124.00
LengthMeasurementArea	Information in degrees	float_32	4	+0.00 +70.00

Telegram syntax 20: Request "Configuration by defining the angular resolution"

Confirmation

Telegram structure:

sMA mSCconfigbyang

Telegram part	Description	Variable type	Length (byte)	Value range
Type of command	Confirmation (SOPAS method acknowledge)	string	3	sMA
Command	Configuration via angular resolution	string	14	mSCconfigbyang

Telegram syntax 21: Confirmation of the "Configuration by defining the angular resolution" request

Answer

Telegram structure:

sAN mSCconfigbyang ErrorCode ScanningFrequency AngularResolution MeasuredValueQuality

Telegram part	Description	Variable type	Length	Value range	
			(byte)		
Type of command	Answer (SOPAS answer)	string	3	sAN	
Command	Configuration via angular	string	14	mSCconfigby	ang
	resolution				
ErrorCode	The command has been	uint_32	4	0000000h	no error
	accepted if the error code 0 is				
	returned.			FFFFFFFh	
ScanningFrequency	Scanning frequency calculated	float_32	4	42C80000h	100.0
	by the LMS400. Information in				
	Hertz. Displayed as hex value			43FA0000h	500.0
AngularResolution	Angular resolution calculated	float_32	4	3DCCCCCDh	0.1
	by the LMS400. Information in				
	degrees. Displayed as hex			3F800000h	1.0
	value				
MeasuredValueQuality	Measured value quality	uint_8	1	05h	5
	calculated by the LMS400.				
	Displayed as hex value			0Ah	10

Telegram syntax 22: Answer to the "Configuration by defining the angular resolution" request

Note

If the measured value quality is <7, then you are operating the sensor outside the specification. On this subject please read section 3.6.4 "Measured value quality" on

page 29.

Example

Request:	sMN mSCconfigbyang 03 B18244B6 +0.25 01 +55.0 +70.0
Confirmation:	sMA mSCconfigbyang
Answer:	sAN mSCconfigbyang 00000000 4340FF1D 3E800000 08

11.4.4 Enable extended RIS detectivity

If you want to measure objects with remission values <10%, you can extend the so-called Remission Information System (RIS) on the LMS400 (see *"Measurement area expansion"* on page 28).

Request

Telegram structure:

sWN MDblex ExtendedRISDetectivity

Telegram part	Description	Variable type	Length (byte)	Value rang	(e
Type of command	Request (SOPAS write by name)	string	3	sWN	
Command	Enable extended RIS detectivity	string	6	MDblex	
ExtendedRISDetectivity	Extended RIS detectivity is	bool_1	1	00h	false
	active			01h	true

Telegram syntax 23: Request "Enable extended RIS detectivity"

Answer

Telegram structure: sWA MDblex

Telegram part	Description	Variable type	Length	Value range
			(byte)	
Type of command	Answer (SOPAS answer)	string	3	sWA
Command	Enable extended RIS detectivity	string	6	MDblex

Telegram syntax 24: Answer to the "Enable extended RIS detectivity" request

Example

Request:	sWN MDblex 01
Answer:	sWA MDblex

11.5 **Reference general configuration telegrams**

11.5.1 Select user level

By means of the selection of a user level and transfer of the corresponding password, permits further configuration. The LMS400 expects the password in the telegram in coded form (hash value).

How to determine the hash value for the password:

- > Open or create a SOPAS ET project which contains the LMS400.
- > Mark in the project tree the LMS400 or a lower level branch.
- ▶ Login to the device using OPTIONS, LOGIN DEVICE with the required user level.
- In the menu LMS400_XX00 open the command PASSWORD, CALCULATE HASH VALUE.
- Enter the password in the PLAIN TEXT field and click on START CALCULATION.
- Use the hash value determined without the prefix "Ox".
- Factory setting for devices with software version up to 1.13 is the hash value B18244B6 Note

int_8

uint_32

	Telegram structure:	sMN SetAccessMod
Telegram part	Description	Variable type
Type of command	Request (SOPAS method I name)	by string
Command	Select user level	string

A valid user level must be

E.g. encoded value for

the command.

"LMS_400"

included in the transmission.

Otherwise the LMS400 rejects

Request

Mode UserLevel Password

Length (byte)

3

13

1

4

Value range

SetAccessMode

maintenance

authorized client

00000000h ... FFFFFFFh

personnel

service

sMN

02h

03h

04h

Lelegram syntax 25:	Request "Select user level"

UserLevel

Password

Confirmation

Telegram structure:

sMA SetAccessMode

Telegram part	Description	Variable type	Length (byte)	Value range
Type of command	Confirmation (SOPAS method acknowledge)	string	3	sMA
Command	Select user level	string	13	SetAccessMode

Telegram syntax 26: Confirmation of the "Select user level" request

Answer

Telegram structure: **sAN SetAccessMode** ChangeUserLevel

Telegram part	Description	Variable type	Length	Value range	
			(byte)		
Type of command	Answer (SOPAS answer)	string	3	sAN	
Command	Select user level	string	13	SetAcess	Mode
ChangeUserLevel	A new user level is opened.	bool_1	1	00h	error
				01h	user change successful

Telegram syntax 27: Answer to the "Select user level" request

Request:	sMN SetAccessMode 03 B18244B6
Confirmation:	sMA SetAccessMode
Answer:	sAN SetAccessMode 01

11.5.2 Query user level

Returns the current user level.

Request

Telegram structure:

sMN GetAccessMode

Telegram part	Description	Variable type	Length	Value range
			(byte)	
Type of command	Request (SOPAS method by name)	string	3	sMN
Command	Query user level	string	13	GetAccessMode

Telegram syntax 28: Request "Query user level"

Confirmation

Telegram structure:

sMA GetAccessMode

Telegram part	Description	Variable type	Length	Value range
			(byte)	
Type of command	Confirmation (SOPAS method acknowledge)	string	3	sMA
Command	Query user level	string	13	GetAccessMode

Telegram syntax 29: Confirmation of the "Query user level" request

Answer

Telegram structure: **sAN GetAccessMode** UserLevel

Telegram part	Description	Variable type	Length (byte)	Value range
Type of command	Answer (SOPAS answer)	string	3	sAN
Command	Query user level	string	13	GetAccessMode
UserLevel	The current user level is output.	uint_8	1	 00h nobody logged in 01h machine operator 02h maintenance personnel
				03h authorized client
				04h service

Telegram syntax 30: Answer to the "Query user level" request

Request:	sMN GetAccessMode
Confirmation:	sMA GetAccessMode
Answer:	sAN GetAccessMode 03

11.5.3 Set password

Sets a new password for a specific user level. The LMS400 must be in the appropriate user level to perform this action (see *11.5.1 on page 96*). The telegram can then change the password for the same user level or a lower user level.

Request

Telegram structure:

sMN SetPassword UserLevel NewPassword

Telegram part	Description	Variable type	Length (byte)	Value range
Type of command	Request (SOPAS method by name)	string	3	sMN
Command	Set password	string	11	SetPassword
UserLevel	User level for which the password is to be changed	int_8	1	02h maintenance personnel03h authorized client
NewPassword	Hash value for the new password (see 11.5.1 on page 96)	uint_32	4	00000000h FFFFFFFFh

Telegram syntax 31: Request "Set password"

Confirmation

Telegram structure: sMA SetPassword

Telegram part	Description	Variable type	Length	Value range
			(byte)	
Type of command	Confirmation (SOPAS method acknowledge)	string	3	sMA
Command	Set password	string	11	SetPassword

Telegram syntax 32: Confirmation of the "Set password" request

Answer

Telegram structure: sAN Se

sAN SetPassword PasswordSet

Telegram part	Description	Variable type	Length (byte)	Value range
Type of command	Answer (SOPAS answer)	string	3	sAN
Command	Set password	string	11	SetPassword
PasswordSet	The new password has been	bool_1	1	00h error
	set.			01h password has been set

Telegram syntax 33: Answer to the "Set password" request

Request:	sMN SetPassword 03 B8F9E6C
Confirmation:	sMA SetPassword
Answer:	sAN SetPassword 01

11.5.4 Set device name

Sets a device name for the LMS400.

Note The required user level is "Maintenance personnel" (see 11.5.1 on page 96).

Request

Telegram structure:

sWN LocationName Length Device name

Telegram part	Description	Variable type	Length	Value range
			(byte)	
Type of command	Request (SOPAS write by name)	string	3	sWN
Command	Set device name	string	12	LocationName
Length	Number of characters in the	uint_16	2	0000h 0
	device name			
				0010h 16
Device name	Flexible range from 0 to 16	string	0 16	
	characters (20h FFh)			

Telegram syntax 34: Request "Set device name"

Answer

Telegram structure: **sWA LocationName**

Telegram part	Description	Variable type	Length	Value range
			(byte)	
Type of command	Answer (SOPAS write answer)	string	3	sWA
Command	Set device name	string	12	LocationName

Telegram syntax 35: Answer to the "Set device name" request

Example

Request: sMN LocationName 0006 ROB003

Answer:

sWA LocationName

11.5.5 Save parameters permanently

All parameters transferred using telegrams are first saved in an interim memory in the LMS400. The "Save parameters permanently" telegram permanently saves in the device the scanner parameters that are in the intermediate memory. The parameters are then not lost when the LMS400 is switched off.

Note The LMS400 must be in the user level "Authorized client" (see 11.5.1 on page 96).

Request

Telegram structure: **sMN mEEwriteall**

Telegram part	Description	Variable type	Length	Value range
			(byte)	
Type of command	Request (SOPAS method by name)	string	З	sMN
Command	Save parameters permanently	string	11	mEEwriteall

Telegram syntax 36: Request "Save parameters permanently"

Confirmation

Telegram structure: **sMA mEEwriteall**

Telegram part	Description	Variable type	Length	Value range
			(byte)	
Type of command	Confirmation (SOPAS method acknowledge)	string	3	sMA
Command	Save parameters permanently	string	11	mEEwriteall

Telegram syntax 37: Confirmation of the "Save parameters permanently" request

Answer

Telegram structure: **sAN mEEwriteall** ErrorCode

Telegram part	Description	Variable type	Length	Value range
			(byte)	
Type of command	Answer (SOPAS answer)	string	3	sAN
Command	Save parameters permanently	string	11	mEEwriteall
ErrorCode	The command has been accepted if the error code 0 is returned.	uint_32	4	00000000h no error FFFFFFFh

Telegram syntax 38: Answer to the "Save parameters permanently" request

Example

Request:sMN mEEwriteallConfirmation:sMA mEEwriteallAnswer:sAN mEEwriteall 00000000

11.5.6 Terminate configuration

The LMS400 changes to user level 0.

Request

Telegram structure:

sMN Run

Telegram part	Description	Variable type	Length	Value range
			(byte)	
Type of command	Request (SOPAS method by name)	string	3	sMN
Command	Terminate configuration	string	3	Run

Telegram syntax 39: Request "Terminate configuration"

Confirmation

Telegram structure: sMA Run

Telegram part	Description	Variable type	Length	Value range
			(byte)	
Type of command	Confirmation (SOPAS method acknowledge)	string	3	sMA
Command	Terminate configuration	string	3	Run

Telegram syntax 40: Confirmation of the "Terminate configuration" request

Answer

Telegram structure: **sAN Run** UserLevel0

Telegram part	Description	Variable type	Length (byte)	Value range
Type of command	Acknowledgement of receipt (SOPAS method acknowledge)	string	3	sAN
Command	Terminate configuration	string	3	Run
UserLevelO	User level 0 is opened.	bool_1	1	00h false
				01h true

Telegram syntax 41: Answer to the "Terminate configuration" request

Request:	sMN Run
Confirmation:	sMA Run
Answer:	sAN Run 01

11.5.7 **Reset device**

This telegram resets the LMS400 (see also 2.5 "Quick stop and Quick restart" on page 18). It retains parameters stored in the internal, non-volatile memory. Measured values on the interface are lost. The LMS400 restarts operation with the last saved parameters.

Notes • It takes approx. 5 seconds to reset the LMS400. During this period the device cannot receive or process further telegrams.

The required user level is "Maintenance personnel" (see 11.5.1 on page 96). •

Request

Telegram structure: sMN mDCreset

Telegram part	Description	Variable type	Length (byte)	Value range
Type of command	Request (SOPAS method by name)	string	3	sMN
Command	Reset device	string	8	mDCreset

Telegram syntax 42: Request "Reset device"

Confirmation

Telegram structure:

sMA mDCreset

Telegram part	Description	Variable type	Length	Value range
			(byte)	
Type of command	Confirmation (SOPAS method acknowledge)	string	3	sMA
Command	Reset device	string	8	mDCreset

Telegram syntax 43: Confirmation of the "Reset device" request

Answer

Telegram structure:

sAN mDCreset ErrorCode

Telegram part	Description	Variable type	Length	Value range
			(byte)	
Type of command	Acknowledgement of receipt	string	3	sAN
	(SOPAS method acknowledge)			
Command	Reset device	string	8	mDCreset
ErrorCode	The command has been	uint_32	4	00000000h no error
	accepted if the error code 0 is			
	returned.			FFFFFFFh

Telegram syntax 44: Answer to the "Reset device" request

Request:	sMN mDCreset
Confirmation:	sMA mDCreset
Answer:	sAN mDCreset 00000000

11.5.8 Place device in delivery status

All parameters are set to the default delivery status and saved permanently in the EEPROM. All parameters configured previously are lost.

- **Notes** It takes approx. 5 seconds to reset the LMS400. During this period the device cannot receive or process further telegrams.
 - The required user level is "Authorized client" (see 11.5.1 on page 96).

Request

Telegram structure: sMN mMDsetdefault

Telegram part	Description	Variable type	Length	Value range
			(byte)	
Type of command	Request (SOPAS method by name)	string	3	sMN
Command	Place device in delivery status	string	13	mMDsetdefault

Telegram syntax 45: Request "Place device in delivery status"

Confirmation

Telegram structure: **sMA mMDsetdefault**

Telegram part	Description	Variable type	Length	Value range
			(byte)	
Type of command	Confirmation (SOPAS method acknowledge)	string	3	sMA
Command	Place device in delivery status	string	13	mMDsetdefault

Telegram syntax 46: Confirmation of the "Place device in delivery status" request

Answer

Telegram structure: **sAN mMDsetdefault** ErrorCode

Telegram part	Description	Variable type	Length	Value range
			(byte)	
Type of command	Acknowledgement of receipt	string	3	sAN
	(SOPAS method acknowledge)			
Command	Place device in delivery status	string	13	mMDsetdefault
ErrorCode	The command has been	uint_32	4	00000000h no error
	accepted if the error code 0 is			
	returned.			FFFFFFFh

Telegram syntax 47:

Answer to the "Place device in delivery status" request

Request:	sMN mMDsetdefault
Confirmation:	sMA mMDsetdefault
Answer:	sAN mMDsetdefault 00000000

11.6 Configuration telegrams for master/slave operation

11.6.1 Select type of synchronisation

Defines how an LMS400 synchronises with another LMS400 (see 3.8 "Master/slave operation" on page 34).

Note The required user level is "Authorized client" (see 11.5.1 on page 96).

Request

Telegram structure:

sWN SYtype Synchronisation

Telegram part	Description	Variable type	Length	Value range
			(byte)	
Type of command	Request (SOPAS write by name)	string	3	sWN
Command	Select synchronisation	string	6	SYtype
Synchronisation	Corresponds to the possible	uint_8	1	00h none
	selections available in SOPAS			01h master
				02h slave

Telegram syntax 48: Request "Select synchronisation"

Answer

Telegram structure: sWA SYtype

Telegram part	Description	Variable type	Length	Value range
			(byte)	
Type of command	Answer (SOPAS write answer)	string	3	sWA
Command	Select synchronisation	string	6	SYtype

Telegram syntax 49: Answer to the "Select synchronisation" request

Example

Request:	sWN SYtype 01
Answer:	sWA SYtype

11.6.2 Define phase

Defines the phase offset of the rotating mirrors on two synchronised LMS400 (see 3.8.1 "Phase offset of the rotating mirrors" on page 34).

Note The required user level is "Authorized client" (see 11.5.1 on page 96).

Request

Telegram structure:

sWN SYphas

Telegram part	Description	Variable type	Length (byte)	Value range
Type of command	Request (SOPAS write by name)	string	3	sWN
Command	Determine phase	string	6	SYphas
Phase	Information on the angle in degrees	uint_32	4	+0 +60

Telegram syntax 50: Request "Determine phase"

Answer

Telegram structure: **sWA SYphas**

Telegram part	Description	Variable type	Length	Value range
Type of command	Answer (SOPAS answer)	string	(byte) 3	sWA
Command	Determine phase	string	6	SYphas

Telegram syntax 51: Answer to the "Determine phase" request

Example

Request:	sWN SYphas +35
Answer:	sWA SYphas

11.7 Reference configuration telegrams for filter setting

11.7.1 Enable filter

Sets one or more filters for the determination of measured values (see 3.7 *"Filtering measured values" on page 29*).

Request

Telegram structure:

sWN FLsel Filter type

Telegram part	Description	Variable type	Length	Value range
			(byte)	
Type of command	Request (SOPAS write by name)	string	3	sWN
Command	Enable filter	string	5	FLsel
Filter type	Defines which of the filters are	uint_8	1	+1 median filter
	enabled. Several filters can be			+2 edge filter
	set by the addition of values.			+4 range filter
5 = Median + range			+8 mean filter	
	9 = Median + mean, etc.			

Telegram syntax 52: Request "Enable filter"

Answer

Telegram structure: **sWA FLsel**

Telegram part	Description	Variable type	Length (byte)	Value range
Type of command	Answer (SOPAS answer)	string	3	sWA
Command	Enable filter	string	5	FLsel

Telegram syntax 53: Answer to the "Enable filter" request

Request:	sWN FLsel +9
Answer:	sWA FLsel

11.7.2 Define median filter

Defines the median filter (see 3.7.2 "Median filter" on page 30).

Request

Telegram structure:

sWN FLmed ReservedByte

Telegram part	Description	Variable type	Length	Value range
			(byte)	
Type of command	Request (SOPAS write by name)	string	3	sWN
Command	Define median filter	string	5	FLmed
ReservedByte	Reserved	uint_8	1	00h

Telegram syntax 54: Request "Define median filter"

Answer

Telegram structure: **sW**

sWA FLmed

Telegram part	Description	Variable type	Length	Value range
			(byte)	
Type of command	Answer (SOPAS answer)	string	3	sWA
Command	Define median filter	string	5	FLmed

Telegram syntax 55: Answer to the "Define median filter" request

Example

Request:	sWN FLmed 00
Answer:	sWA FLmed

11.7.3 Define range filter

Defines a specific distance range within which measured values are valid and are output (see 3.7.3 "Range filter" on page 32).

Request

Telegram structure:

sWN FLrang BottomLimit TopLimit

Telegram part	Description	Variable type	Length	Value range
			(byte)	
Type of command	Request (SOPAS write by name)	string	3	sWN
Command	Define range filter	string	6	FLrang
BottomLimit	Information in mm	float_32	4	+700.0000 +3000.0000
TopLimit	Information in mm	float_32	4	<bottom limit=""> +3000.0000</bottom>

Telegram syntax 56: Request "Define range filter"

Answer

Telegram structure: **sWA FLrang**

Telegram part	Description	Variable type	Length	Value range
			(byte)	
Type of command	Answer (SOPAS answer)	string	3	sWA
Command	Define range filter	string	6	FLrang

Telegram syntax 57: Answer to the "Define range filter" request

Example

Request:	sWN FLrang +1000.0000 +2200.0000
Answer:	sWA FLrang

11.7.4 Define mean filter

Defines the number of means for the mean filter (see 3.7.4 "Mean filter" on page 32).

Request

Telegram structure:

sWN FLmean ReservedByte Mean

Telegram part	Description	Variable type	Length (byte)	Value range	
Type of command	Request (SOPAS write by name)	string	3	sWN	
Command	Define mean filter	string	6	FLmean	
ReservedByte	Reserved	uint_8	1	00h	
Mean	Number of means	uint_16	2	0002h	2
				00C8h	200

Telegram syntax 58: Request "Define mean filter"

Answer

Telegram structure: sWA FLmean

Telegram part	Description	Variable type	Length	Length Value range	
			(byte)		
Type of command	Answer (SOPAS answer)	string	3	sWA	
Command	Define mean filter	string	6	FLmean	

Telegram syntax 59: Answer to the "Define mean filter" request

Example

Request:	sWN FLmean 0 0014
Answer:	sWA FLmean

© SICK AG · Germany · All rights reserved · Subject to change without notice 8016153/YSZ3/2016-02-04
11.8 **Reference configuration telegrams for triggering**

11.8.1 Define time or distance controlled triggering

Defines whether the de-bounce on the inputs as well as the delay and expansion of the gate is time or distance controlled (see 11.8.2 on page 110 and 11.8.3 on page 111).

Note The required user level is "Service" (see 11.5.1 on page 96).

Request

Telegram structure:

sWN	IObase	Control
-----	---------------	---------

Telegram part	Description	Variable type	Length (byte)	Value range
Type of command	Request (SOPAS write by name)	string	3	sWN
Command	Determines the type of control	string	6	lObase
Control	Time or distance based	uint_8	1	00h time based
				01h distance based

Telegram syntax 60: Request "Define time or distance controlled triggering"

Answer

sWA lObase Telegram structure:

Telegram part Description Variable type Length Value range (byte) sWA Type of command Answer (SOPAS answer) string 3 Command Determines the type of control string 6 **IObase**

Answer to the "Define time or distance controlled triggering" request Telegram syntax 61:

Example

Request: sWN IObase 01 Answer: sWA IObase

11.8.2 Define settings for the digital inputs

Defines the input conditions for the digital inputs 1 and 3 (see 3.5.2 "Control of the measurement process using a gate" on page 24).

Note The required user level is "Authorized client" (see 11.5.1 on page 96).

Request

Telegram structure:

sWN IOpins Parameter IN1 (= DebounceDist DebounceTime Logic) Parameter IN2 Parameter IN3 Parameter IN4

Telegram p	part	Description	Variable type	Length (byte)	Value ran	ge
Type of cor	nmand	Request (SOPAS write by name)	string	3	sWN	
Command		Settings for the digital inputs	string	6	lOpins	
4	DebounceDist	De-bounce over distance,	int_16	2	FC13h	-1000 mm
Ż		information in millimetres				
11 to		(see also 11.8.1)			03E8h	1000 mm
N) D	DebounceTime	De-bounce over time,	uint_16	2	0000h	0 ms
Indi		information in milliseconds				
ri Li		(see also 11.8.1)			03E8h	1000 ms
.ea	Logic	Defines the input logic	uint_8	1	00h	active low
Is repeated for					01h	active high

Telegram syntax 62:

Request "Settings for the digital inputs"

Answer

Telegram structure: **sWA IOpins**

Telegram part	Description	Variable type	Length	Value range
			(byte)	
Type of command	Answer (SOPAS answer)	string	3	sWA
Command	Settings for the digital inputs	string	6	lOpins

Telegram syntax 63: Answer to the "Settings for the digital inputs" request

Example Request:

Answer:

11.8.3 Define the gate settings

Defines how the gate is triggered (see 3.5.2 "Control of the measurement process using a gate" on page 24).

Note The required user level is "Authorized client" (see <u>11.5.1 on page 96</u>).

Request

Telegram structure:

sWN lOgcfg StopLikeStart ParameterGATEON (Source TimeDelay ExpansionTime DistanceDelay ExpansionDistance) ParameterGATEOFF

Tele	gram part	Description	Variable type	Length (byte)	Value ran	ge
Туре	of command	Request (SOPAS write by name)	string	3	sWN	
Com	mand	Trigger settings	string	6	l0gcfg	
Stop	LikeStart	The same parameters are used for stopping the gate as for the start	bool_1	1	00h fals 01h true	e e
I stopping the gate	Source	Input 1 or 3, if the trigger source is connected directly to the LMS400. Software trigger, if the trigger is applied via a telegram (see 11.3.3 on page 88).	uint_8	1	OOhinputO2hinputO4hsoftO5hCANO6hinputO7hinputO8htestO9hmaxOFhnorth	ut 1 ut 3 tware trigger N-BUS ut 1 AND 3 ut 1 OR 3 t trigger ster ne
starting and	TimeDelay	Delays the start of the measurement, information in milliseconds	uint_16	2	0000h FFFFh	0 ms 65535 ms
leated for s	Expansion time	Enlarges the gate, information in milliseconds	int_16	2	FC13h 03E8h	-1000 mm 1000 mm
ls rep	DistanceDelay	Delays the start of the measurement, information in millimetres	uint_16	2	0000h FFFFh	0 mm 65535 mm
	Expansion distance	Enlarges the gate, information in millimetres	int_16	2	F830h 07D8h	-2000 mm 2000 mm

Telegram syntax 64: Request "Gate settings"

Answer

Telegram structure: **sWA lOgcfg**

Telegram part	Description	Variable type	Length	Value range
			(byte)	
Type of command	Answer (SOPAS answer)	string	3	sWA
Command	Trigger settings	string	6	lOgcfg

Telegram syntax 65: Answer to the "Gate settings" request

Example

Request:	sWN IOgcfg 01 08 07D0 0000 0014 0032 00 0000 0000 0000 0000
Answer:	sWA IOgcfg

11.8.4 Enable laser control

Enables the laser control that is used to switch on the laser with a trigger and switch it off after a certain distance is reached.

Note The required user level is "Authorized client" (see 11.5.1 on page 96).

Request

Telegram structure:

sWN IOlasc TriggerSource LaserSwitchOffDistance LaserSwitchOffDelay LaserControl

Telegram part	Description	Variable type	Length (byte)	Value range
Type of command	Request (SOPAS write by name)	string	3	sWN
Command	Enable laser control	string	6	IOlasc
TriggerSource	Defines the trigger used to	uint_8	1	00h input 1
	switch on the laser.			02h input 3
				04h software trigger
				05h CAN-BUS
				06h input 1 AND 3
				07h input 1 OR 3
				08h test trigger
				09h master
LaserSwitchOffDistance	Defines the distance after	uint_16	2	0000h 0 mm
	which the laser is switched off.			
	Maximum value			1770h 6000 mm
				(For an encoder resolution of
				0.2 mm/incr.)
LaserSwitchOffDelay	Defines the time after which	uint_16	2	0000h 0 min
	the laser is switched off.			
				FFFFh 65535 min
LaserControl	The laser control function is	uint_8	1	00h deactivated
	used.			01h own source
				02h gate controlled (see
				11.8.3)

Telegram syntax 66: Request "Enable laser control"

Answer

Telegram structure:

sWA IOlasc

Telegram part	Description	Variable type	Length	Value range
			(byte)	
Type of command	Answer (SOPAS answer)	string	3	sWA
Command	Enable laser control	string	6	IOlasc

Answer to the "Enable laser control" request Telegram syntax 67:

Example

Request:	sWN IOlasc 02 0DAC 0005 01
Answer:	sWA IOlasc

11.8.5 Select the encoder settings

Defines the type of encoder used (see 3.5.4 "Connection of encoders" on page 26).

Note The required user level is "Authorized client" (see 11.5.1 on page 96).

Request

Telegram structure:

sWN IOencm Encoder type

Telegram part	Description	Variable type	Length	Value range
			(byte)	
Type of command	Request (SOPAS write by name)	string	3	sWN
Command	Encoder settings	string	6	IOencm
Encoder type	Defines the encoder used	uint_8	1	00h no encoder
				01h Dln 2
				02h direction detection (phase) Dln2/Dln4
				03h direction detection (level) DIn2/DIn4
				04h constant velocity

Telegram syntax 68: Request "Encoder settings"

Answer

Telegram structure:

sWA lOencm

Telegram part	Description	Variable type	Length	Value range
			(byte)	
Type of command	Answer (SOPAS answer)	string	3	sWA
Command	Encoder settings	string	6	IOencm

Telegram syntax 69: Answer to the "Encoder settings" request

Example

Request: Answer:

sWN IOencm 02 sWA IOencm

11.9 Configuration telegrams for the outputs

11.9.1 Enable outputs

Activates the outputs 1 to 5.

- **Notes** The required user level is "Authorized client" (see 11.5.1 on page 96).
 - The telegram cannot be used if the Level Control application is used (see 11.14.1 on page 132).

Request

Telegram structure:

sMN mMSsetoutput OutputNumber OutputValue

Telegram part	Description	Variable type	Length	Value range
			(byte)	
Type of command	Request (SOPAS method by name)	string	3	sMN
Command	Enable output	string	12	mMSsetoutput
OutputNumber	Defines the output that is to be	uint_8	1	01h digital output 1
	configured.			02h digital output 2
				03h digital output 3
				04h digital output 4
				05h analog output
OutputValue	Activates/deactivates the	uint_16	2	digital outputs:
	output defined with the OutputNumber			0 inactive
				1 active
				Analog output:
				0 20000 (in mA)

Telegram syntax 70: Request "Enable outputs"

Confirmation

Telegram structure: **sMA mMSsetoutput**

Telegram part	Description	Variable type	Length	Value range
			(byte)	
Type of command	Confirmation (SOPAS method acknowledge)	string	3	sMA
Command	Enable output	string	12	mMSsetoutput

Telegram syntax 71: Confirmation of the request "Enable outputs"

Answer

Telegram structure:

sAN mMSsetoutput ErrorCode

Telegram part	Description	Variable type	Length	Value range
			(byte)	
Type of command	Answer (SOPAS answer)	string	3	sAN
Command	Enable output	string	12	mMSsetoutput
ErrorCode	The command has been accepted if the error code 0 is returned.	uint_32	4	00000000h no error FFFFFFFh

Telegram syntax 72: Answer to the "Enable Outputs" request

Example

Request:	sMN mMSsetoutput 21
Confirmation:	sMA mMSsetoutput
Answer:	sAN mMSsetoutput 00000000

11.10 Configuration telegrams for the host interface

11.10.1 Select hardware setting

Defines the host interface as RS-232 or as RS-422 interface (see 3.11 "Interface specification" on page 49).

Note The required user level is "Authorized client" (see <u>11.5.1 on page 96</u>).

Request

Telegram structure: **sWN HIr422** Hardware

Telegram part	Description	Variable type	Length	Value range
			(byte)	
Type of command	Request (SOPAS write by name)	string	3	sWN
Command	Hardware setting for the host	string	6	HIr422
	interface			
Hardware	Defines whether RS-232 or	uint_8	1	00h RS-232
	RS-422			01h RS-422

Telegram syntax 73: Request "Hardware setting for the host interface"

Answer

Telegram structure: **sWA HIr422**

Telegram part	Description	Variable type	Length	Value range
			(byte)	
Type of command	Answer (SOPAS answer)	string	3	sWA
Command	Hardware setting for the host interface	string	6	HIr422

Telegram syntax 74: Answer to the "Hardware setting for the host interface" request

Example

Request:	sWN HIr422 01
Answer:	sWA HIr422

11.10.2 Select baud rate

Defines the baud rate for the host interface (see 3.11 "Interface specification" on page 49). Note The required user level is "Authorized client" (see 11.5.1 on page 96).

Request

Telegram structure:

sWN HIbaud Baud rate

Telegram part	Description	Variable type	Length (byte)	Value range
Type of command	Request (SOPAS write by name)	string	3	sWN
Command	Baud rate of the host interface	string	6	Hlbaud
Baud rate	Defines the baud rate for the	uint_8	1	00h 300 Baud
	host interface			01h 600 Baud
				02h 1200 Baud
				03h 2400 Baud
				04h 4800 Baud
				05h 9600 Baud
				06h 19200 Baud
				07h 38400 Baud
				08h 57600 Baud
				09h 115200 Baud

Telegram syntax 75: Request "Baud rate for the host interface"

Answer

Telegram structure: **sWA HIbaud**

Telegram part	Description	Variable type	Length (byte)	Value range
Type of command	Answer (SOPAS answer)	string	3	sWA
Command	Baud rate of the host interface	string	6	HIbaud

Telegram syntax 76: Answer to the "Baud rate for the host interface" request

Example

Request:	sWN HIbaud 09
Answer:	sWA HIbaud

11.10.3 Select number of stop bits

Defines the number of stop bits for the host interface (see 3.11 "Interface specification" on page 49).

Note The required user level is "Authorized client" (see <u>11.5.1 on page 96</u>).

Request

Telegram structure:

sWN HIstop Stop bits

Telegram part	Description	Variable type	Length	Value range
			(byte)	
Type of command	Request (SOPAS write by name)	string	3	sWN
Command	Number of stop bits for the host	string	6	HIstop
	interface			
Stop bits	Defines the number of stop bits	uint_8	1	00h 1 stop bit
	for the host interface			01h 2 stop bits

Telegram syntax 77: Request "Number of stop bits for the host interface"

Answer

Telegram structure: **sWA HIstop**

Telegram part	Description	Variable type	Length	Value range
			(byte)	
Type of command	Answer (SOPAS answer)	string	3	sWA
Command	Number of stop bits for the host interface	string	6	Histop

Telegram syntax 78: Answer to the "Number of stop bits for the host interface" request"

Example

Request:sWN HIstop 01Answer:sWA HIstop

11.10.4 Select data and parity bits

Defines the combination of data and parity bits for the host interface (see 3.11 "Interface specification" on page 49).

Note The required user level is "Authorized client" (see 11.5.1 on page 96).

Request

Telegram structure:

sWN HIdpar DataParityBit

Telegram part	Description	Variable type	Length	Value range
			(byte)	
Type of command	Request (SOPAS write by name)	string	3	sWN
Command	Data and parity bits for the host interface	string	6	Hldpar
DataParityBit	Defines the baud rate for the	uint_8	1	00h 8 data bits, no parity
	host interface.			01h 8 data bits, even
				02h 7 data bits, even
				03h 8 data bits, odd
				04h 7 data bits, odd
				05h 7 data bits, MarkP
				06h 7 data bits, SpaceP

Telegram syntax 79:

79: Request "Data and parity bits for the host interface"

Answer

Telegram structure: sWA HIdpar

Telegram part	Description	Variable type	Length	Value range
			(byte)	
Type of command	Answer (SOPAS answer)	string	3	sWA
Command	Data and parity bits for the host	string	6	Hldpar
	interface			

Telegram syntax 80: Answer to the "Data and parity bits for the host interface" request

Example

Request:sWN HIdpar 01Answer:sWA HIdpar

11.10.5 Select block check byte setting

Defines whether the block check byte is sent and, if so, whether it is sent before or after the stop bit.

Notes • The required user level is "Authorized client" (see 11.5.1 on page 96).

• The setting affects the telegram frame (see Tab. 14 on page 51).

Request

Telegram structure:

sWN HIbIck Block check

Telegram part	Description	Variable type	Length	Value range
			(byte)	
Type of command	Request (SOPAS write by name)	string	3	sWN
Command	Block check byte setting for the host interface	string	6	Hibick
Block check	Defines whether a block check byte is sent and whether it is sent before or after the stop bit	uint_8	1	00h none01h before the stop bit02h after the stop bit

Telegram syntax 81: Request "Block check byte setting for the host interface"

Answer

Telegram structure: **sWA Hibick**

Telegram part	Description	Variable type	Length	Value range
			(byte)	
Type of command	Answer (SOPAS answer)	string	3	sWA
Command	Block check byte setting for the	string	6	Hiblck
	host interface			

Telegram syntax 82: Answer to the "Block check byte setting for the host interface" request

Example

Request:	sWN HIblck 02
Answer:	sWA HIblck

11.10.6 Select receive start character

Defines which character is detected as the start character for the telegrams from the LMS400 (see 3.12.1 *"Frame and coding for the telegrams" on page* 51).

Note The required user level is "Authorized client" (see 11.5.1 on page 96).

Request

Telegram structure:

sWN HIrpre ReceiveStartCharacter

Telegram part	Description	Variable type	Length	Value	e range		
			(byte)				
Type of command	Request (SOPAS write by name)	string	3	sWN			
Command	Start character for telegrams to be received	string	6	Hirpr	e		
ReceiveStartCharacter	Hex value for the start	uint_8	1	00h	NUL	10h	DLE
	character			01h	SOH	12 h	DC2
				02h	STX	14h	DC4
				03h	ETX	16h	SYN
				04h	EOT	17h	ETB
				05h	ENQ	18 h	CAN
				07h	BEL	19h	EM
				08h	BS	1Ah	SUB
				09h	HT	1Bh	ESC
				0Ah	LF	1Ch	FSP
				0Bh	VT	1Dh	GSP
				0Ch	FF	1Eh	RSP
				0Dh	CR	1Fh	USP
				0Eh	SO	20h	SPC
				0Fh	SI	7Fh	DEL

Telegram syntax 83:

Request "Start character for telegrams to be received"

Answer

Telegram structure: **sWA HIrpre**

Telegram part	Description	Variable type	Length	Value range
			(byte)	
Type of command	Answer (SOPAS answer)	string	3	sWA
Command	Start character for telegrams to be received	string	6	Hirpre

Telegram syntax 84: Answer to the "Start character for telegrams to be received" request

Example

Request:sWN HIrpre 02Answer:sWA HIrpre

11.10.7 Select receive stop character

Defines which character is detected as the stop character for the telegrams from the LMS400 (see 3.12.1 *"Frame and coding for the telegrams" on page* 51).

Notes • The required user level is "Authorized client" (see 11.5.1 on page 96).

• The setting affects the telegram frame (see *Tab. 14 on page 51*).

Request

Telegram structure:

sWN Hirpst ReceiveStopCharacter1 ReceiveStopCharacter2

Telegram part	Description	Variable type	Length	Value range
			(byte)	
Type of command	Request (SOPAS write by name)	string	3	sWN
Command	Stop character for telegrams to be received	string	6	Hirpst
ReceiveStopCharacter1	Hex value of stop character 1	uint_8	1	See "ReceiveStartCharacter"
ReceiveStopCharacter2	Hex value of stop character 2 If only one stop character is to be used, then set the second byte to ZERO (00h)	uint_8	1	in 11.10.6 on page 120

Telegram syntax 85: Request "Stop character for telegrams to be received"

Answer

Telegram structure:

sWA HIrpst

Telegram part	Description	Variable type	Length	Value range
			(byte)	
Type of command	Answer (SOPAS answer)	string	3	sWA
Command	Stop character for telegrams to be received	string	6	Hirpst

Telegram syntax 86: Answer to the "Stop character for telegrams to be received" request

Example

Request:

Answer:

sWN HIrpst 0D 0A sWA HIrpst

11.10.8 Select send start character

Defines which start character is sent by the LMS400 before the data in the telegram (see 3.12.1 "Frame and coding for the telegrams" on page 51).

Note The required user level is "Authorized client" (see 11.5.1 on page 96).

Request

Telegram structure:

sWN Hitpre SendStartCharacter

Telegram part	Description	Variable type	Length (byte)	Value range
Type of command	Request (SOPAS write by name)	string	3	sWN
Command	Start character for telegrams to be sent	string	6	Hitpre
SendStartCharacter	Hex value for the start character	uint_8	1	See "ReceiveStartCharacter" in 11.10.6 on page 120

Telegram syntax 87: Request "Start character for telegrams to be sent"

Answer

Telegram structure: **sWA Hitpre**

Telegram part	Description	Variable type	Length	Value range
			(byte)	
Type of command	Answer (SOPAS answer)	string	3	sWA
Command	Start character for telegrams to be sent	string	6	Hitpre

Telegram syntax 88: Answer to the "Start character for telegrams to be sent" request

Example

Request:	sWN HItpre 02
Answer:	sWA HItpre

11.10.9 Select send stop character

Defines which stop character is sent by the LMS400 after the data in the telegram (see 3.12.1 "Frame and coding for the telegrams" on page 51).

• The required user level is "Authorized client" (see 11.5.1 on page 96).

• The setting affects the telegram frame (see *Tab. 14 on page 51*).

Request

Notes

Telegram structure:

sWN Hitpst SendStopCharacter1 SendStopCharacter2

Telegram part	Description	Variable type	Length	Value range
			(byte)	
Type of command	Request (SOPAS write by name)	string	3	sWN
Command	Stop character for telegrams to be sent	string	6	HItpst
SendStopCharacter1	Hex value of stop character 1	uint_8	1	See "ReceiveStartCharacter"
SendStopCharacter2	Hex value for stop character 2. If only one stop character is to be used, then set the second byte to ZERO (00h).	uint_8	1	in 11.10.6 on page 120

Telegram syntax 89: Request "Stop character for telegrams to be sent"

Answer

Telegram structure: sWA HItpst

Telegram part	Description	Variable type	Length	Value range
			(byte)	
Type of command	Answer (SOPAS answer)	string	3	sWA
Command	Stop character for telegrams to be sent	string	6	Hitpst

Telegram syntax 90: Answer to the "Stop character for telegrams to be sent" request

Example

Request:sWN HItpst 0D 0AAnswer:sWA HItpst

11.11 Configuration telegrams for the Ethernet interface

Note For the configuration telegram for the Ethernet interface to be effective, the LMS400 must be reset after successful transfer of the telegram (see 11.5.7 on page 103).

11.11.1 Defining the IP address of the LMS400

Defines the IP address of the LMS400 (see 3.11 "Interface specification" on page 49).

Note The required user level is "Authorized client" (see 11.5.1 on page 96).

Request

Telegram structure: **sWN Elip** IPAddress

Telegram part	Description	Variable type	Length	Value range	
			(byte)		
Type of command	Request (SOPAS write by name)	string	3	sWN	
Command	IP address of the Ethernet	string	4	Elip	
	interface				
IPAddress	Hex value for the IP address	Array of 4 ×	4	00h 00h 00h 00h	0.0.0.0
		uint_8		FFh FFh FFh FFh	 255.255.255.255

Telegram syntax 91: Request "IP address for the Ethernet interface"

Answer

Telegram structure: **sWA Elip**

Telegram part	Description	Variable type	Length	Value range
			(byte)	
Type of command	Answer (SOPAS answer)	string	3	sWA
Command	IP address of the Ethernet	string	4	Elip
	interface			

Telegram syntax 92: Answer to the "IP address for the Ethernet interface" request

Example

Request:	sWN EIip C6 A8 14 01
Answer:	sWA EIip

11.11.2 Define gateway address for the Ethernet interface

Defines the gateway address for the Ethernet interface (see 3.11 "Interface specification" on page 49).

Note The required user level is "Authorized client" (see <u>11.5.1 on page 96</u>).

Request

Telegram structure:

sWN Elgate GatewayAddress

Telegram part	Description	Variable type	Length (byte)	Value range	
Type of command	Request (SOPAS write by name)	string	3	sWN	
Command	Gateway address for the Ethernet interface	string	6	Elgate	
GatewayAddress	Hex value for the gateway address	Array of 4 × uint_8	4	00h 00h 00h 00h FFh FFh FFh FFh	0.0.0.0 255.255.255.255

Telegram syntax 93: Request "Gateway address for the Ethernet interface"

Answer

Telegram structure: **sWA Elgate**

Telegram part	Description	Variable type	Length	Value range
			(byte)	
Type of command	Answer (SOPAS answer)	string	3	sWA
Command	Gateway address for the Ethernet interface	string	6	Elgate

Telegram syntax 94: Answer to the "Gateway address for the Ethernet interface" request

Example

Request:	sWN EIgate C6 A8 73 01
Answer:	sWA Elgate

11.11.3 Define the subnet mask for the Ethernet interface

Defines the gateway address for the Ethernet interface (see 3.11 "Interface specification" on page 49).

Note The required user level is "Authorized client" (see <u>11.5.1 on page 96</u>).

Request

Telegram structure: **sWN EIMsak** Subnet mask

Telegram part	Description	Variable type	Length	Value range	
			(byte)		
Type of command	Request (SOPAS write by name)	string	3	sWN	
Command	Subnet mask for the Ethernet	string	6	EIMask	
	interface				
Subnet mask	Hex value for the subnet mask	Array of 4 ×	4	00h 00h 00h 00h	0.0.0.0
		uint_8		FFhFFhFFhFFh	 255.255.255.255

Telegram syntax 95: Request "Subnet mask for the Ethernet interface"

Answer

Telegram structure: **sWA EIMask**

Telegram part	Description	Variable type	Length	Value range
			(byte)	
Type of command	Answer (SOPAS answer)	string	3	sWA
Command	Subnet mask for the Ethernet interface	string	6	ElMask

Telegram syntax 96:

96: Answer to the "Subnet mask for the Ethernet interface" request

Example

Request:	sWN EIMask FF FF FF 00
Answer:	sWA EIMask

11.11.4 Define port for the TCP/IP communication

Defines the port for the TCP/IP communication (see 3.11 "Interface specification" on page 49).

Note The required user level is "Authorized client" (see 11.5.1 on page 96).

Request

Telegram structure:

sWN Elport Port

Telegram part	Description	Variable type	Length	Value range	1
			(byte)		
Type of command	Request (SOPAS write by name)	string	3	sWN	
Command	Port for the TCP/IP communication	string	6	Elport	
Port	Hex value for the port	uint_16	2	0000h	0
				FFFFh	65535

Telegram syntax 97: Request "Port for the TCP/IP communication"

Answer

Telegram structure: **sWA Elport**

Telegram part	Description	Variable type	Length	Value range
			(byte)	
Type of command	Answer (SOPAS answer)	string	3	sWA
Command	Port for the TCP/IP communication	string	6	Elport

Telegram syntax 98: Answer to the "Port for the TCP/IP communication" request

Example

Request: Answer:

sWN Elport 0461

sWA EIport

11.11.5 Read MAC address of the LMS400

Reads the MAC address (Media Access Control address) of the LMS400.

Request

Telegram structure: **sRN Elmac**

Telegram part	Description	Variable type	Length	Value range
			(byte)	
Type of command	Request (SOPAS read by name)	string	3	sRN
Command	Define MAC address for the TCP/IP communication	string	5	Elmac

Telegram syntax 99: Request "Define MAC address for TCP/IP communication"

Answer

Telegram structure: **sRA Elmac** MACAddress

Telegram part	Description	Variable type	Length	Value range
			(byte)	
Type of command	Answer (SOPAS answer)	string	3	sRA
Command	Define MAC address for the TCP/IP communication	string	5	Elmac
MACAddress	The MAC address of the LMS400 is output.	string	17	00-06-77-00-00-00 00-06-77-FF-FF-FF

Telegram syntax 100: Answer to the "Define MAC address for the TCP/IP communication" request

Example Request:

Answer:

sRN EImac sRA EImac 00-06-77-00-00-00

11.11.6 Select format for the CoLa protocol

Defines the transmission protocol of the LMS400.

Note The required user level is "Authorized client" (see 11.5.1 on page 96).

Request

Telegram structure:

sWN Elcola CoLaProtokol

Telegram part	Description	Variable type	Length	Value range
			(byte)	
Type of command	Request (SOPAS write by name)	string	3	sWN
Command	Define format of the CoLa protocol	string	6	Elcola
CoLaProtokol	Defines whether transmission is in binary or ASCII	uint_8	1	00h ASCII (Cola-A)01h binary (Cola-B)

Telegram syntax 101: Request "Define format of the CoLa protocol"

Answer

Telegram structure: **sWA Elcola**

Telegram part	Description	Variable type	Length	Value range
			(byte)	
Type of command	Answer (SOPAS answer)	string	3	sWA
Command	Define format of the CoLa protocol	string	6	Elcola

Telegram syntax 102: Answer to the "Define format of the CoLa protocol" request

Example

Request:sWN EIcola 01Answer:sWA EIcola

11.12 Reference status log telegrams

11.12.1 Query warnings

Request

Telegram structure: sRN MSwarn

Telegram part	Description	Variable type	Length (byte)	Value range
Type of command	Request (SOPAS write by name)	string	3	sRN
Command	Query warnings	string	6	MSwarn

Telegram syntax 103: Request "Query warnings"

Answer

Telegram structure:

sRA MSwarn ParameterWARNING1 (ErrorCode FirstTimePwrOnCnt FirstTimeOpHours FirstTimeDailyOpHours LastTimePwrOnCnt LastTimeOpHours LastTimeDailyOpHours Number ReservedBytes) ParameterWARNING2 ParameterWARNING3 ParameterWARNING4 ParameterWARNING5

Telegram part Type of command Command		Description	Variable type	Length (byte)	Value range
		Answer (SOPAS answer)	string	3	sRA
		Query warnings	string	6	MSwarn
ed)	ErrorCode	Hex value of the error code saved	uint_32	4	00000001h FFFFFFFFh
nese are fill	FirstTimePwrOnCnt	Switch on counter reading at the time of first occurrence	uint_16	2	0000h FFFFh
five times whether th	FirstTimeOpHours	Overall operating hours counter reading at the time of first occurrence	uint_16	2	0000h FFFFh
Parameters are repeated f (per memory for warnings, independent of	FirstTimeDailyOpHours	Operating hours counter reading at the time of first occurrence	uint_16	2	0000h FFFFh
	LastTimePwrOnCnt	Switch on counter reading at the time of last occurrence	uint_16	2	0000h FFFFh
	LastTimeOpHours	Overall operating hours counter reading at the time of last occurrence	uint_16	2	0000h FFFFh
	LastTimeDailyOpHours	Operating hours counter reading at the time of last occurrence	uint_16	2	0000h FFFFh
	Number	Indicates a number of occurrences	uint_16	2	0000h FFFFh
Reserv	vedBytes	Reserved	uint 16	2	0000h

Telegram syntax 104: Answer to the "Query warnings" request

Example

Request:	sWN MSwarn
Answer:	sWA MSwarn 4C0ACC0A 00A4 0255 0005 00A4 0256 0006 0256 0000
	4C0ACC0B 00A4 0255 0005 00A4 0256 0006 0256 0000 4C0ACC0C 00A4
	0255 0005 00A4 0256 0006 0256 0000 4C0ACC0B 00A4 0255 0005 00A4 0256
	0006 0256 0000 4C0ACC0C 00A4 0255 0005 00A4 0256 0006 0256 0000

11.12.2 Query errors

Request

Telegram structure:

sRN MSerr

Telegram part	Description	Variable type	Length (byte)	Value range
Type of command	Request (SOPAS write by name)	string	3	sRN
Command	Query errors	string	5	MSerr

Telegram syntax 105: Request "Query errors"

Answer

Telegram structure:

sRA MSerr ParameterERROR1 (ErrorCode FirstTimePwrOnCnt FirstTimeOpHours FirstTimeDailyOpHours LastTimePwrOnCnt LastTimeOpHours LastTimeDailyOpHours Number ReservedBytes) ParameterERROR2 ParameterERROR3 ParameterERROR4 ParameterERROR5

Telegr	am part	Description	Variable type	Length (byte)	Value range
Type o	f command	Answer (SOPAS answer)	string	3	sRA
Comm	and	Query errors	string	5	MSerr
	For parameters see <i>Telegram syntax</i> 104: on page 129				
Reserv	vedBytes	Reserved	uint_16	2	0000h

Telegram syntax 106: Answer to the "Query errors" request

Example

11.12.3 Query serious errors

Request

Telegram structure:

sRN MSfat

Telegram part	Description	Variable type	Length (byte)	Value range
Type of command	Request (SOPAS write by name)	string	3	sRN
Command	Query serious errors	string	5	MSfat

Telegram syntax 107: Request "Query serious errors"

Answer

Telegram structure:

sRA MSfat ParameterSERIOUSERROR1 (ErrorCode FirstTimePwrOnCnt FirstTimeOpHours FirstTimeDailyOpHours LastTimePwrOnCnt LastTimeOpHours LastTimeDailyOpHours Number ReservedBytes) ParameterSERIOUSERROR2 ParameterSERIOUSERROR3 ParameterSERIOUSERROR4 ParameterSERIOUSERROR5

Teleg	ram part	Description	Variable type	Length	Value range
				(byte)	
Туре с	of command	Answer (SOPAS answer)	string	3	sRA
Comm	nand	Query serious errors	string	5	MSfat
	For parameters see Telegram syntax 104: on page 129				
ReservedBytes		Reserved	uint_16	2	0000h

Telegram syntax 108: Answer to the "Query serious errors" request

Example

sRN MSfat

Request: Answer:

sRA MSfat 4912C912 00A4 0255 0005 00A4 0256 0006 0256 0000 00000000 $0000\ 000\ 000\ 0$ 0000 0000 0000 0000 0000 0000 0000 0000

Value	Class	Possible cause	Comment
00000000h	No error		
XXXXC303h	Error	Motor speed too low	Laser has been shutdown, as eye protection is
		• <360 Hz	no longer assured.
XXXXC304h	Error	Laser power is too low	Maybe malfunction due to external light
XXXXC612h	Info		The device is still continuing to attempt to
XXXXC614h	Info	The connection to the host has been lost.	send data. Initiate a new request or re-start the LMS400.
XXXXC912h	Serious error	EEPROM faulty	Please contact SICK service.
XXXXC913h	Error	The required motor velocity cannot be achieved.	Please contact SICK service.
XXXXCC03h	Info	One of the device self-tests has failed.	Not a critical state
XXXXCCOAh	Warning		
XXXXCCOBh	Warning	Self-test on a temperature sensor has failed	Not a critical state
XXXXCCOCh	Warning		
XXXXCE01h	Info	Parameters outside the valid range	A parameter that has been transferred with
XXXXCE02h	Info	Parameter too high	the aid of a configuration telegram was
XXXXCE03h	Info	Parameter too low	outside its valid range.
XXXXCE04h	Info	Password transferred incorrect	Check the hash value transferred (see 11.5.1 on page 96).
XXXXCE04h	Info	User level transferred too low	Check whether the user level with which the application has logged in is adequate for the telegram (see 11.2 on page 81).
XXXXCF04h	Info	Device busy	The LMS400 was processing a previous command.
XXXXCF05h	Info	Command unknown	Check the syntax of the telegram transferred.

11.13 Error codes

Tab. 28: Error codes

Note The first four digits of the error code do not need to be used to evaluate the error, only the last four digits are relevant.

11.14 Telegrams for Level Control

11.14.1 Start measured value output for Level Control

Measured values are only output on request over the related interface. You can configure in SOPAS ET which measured value telegram is output as a reply (see *"Output of the column values" on page 134* or *"Output of the switching point states" on page 136*).

PROJECT TREE, LMS400-XX00, PARAMETER, LEVEL CONTROL, TELEGRAM, area SETTINGS

Request

Telegram structure:

sMN mLRreqlevelcontroldata Number

Telegram part	Description	Variable type	Length	Value ran	ge
			(byte)		
Type of command	Request (SOPAS method by	string	3	sMN	
	name)				
Command	Data request	string	22	mLRreqle	velcontroldata
Number	Number of results that are to be	uint_16	2	0000h	continuous
	output			0001h	1 result
				000Ah	10 results

Telegram syntax 109: Request "Data request"

Confirmation

Telegram structure:

sMA mLRreqlevelcontroldata

Telegram part	Description	Variable type	Length	Value range
			(byte)	
Type of command	Confirmation (SOPAS method acknowledge)	string	3	sMA
Command	Data request	string	22	mLRreqlevelcontroldata

Telegram syntax 110: Confirmation of the "Data request" request

Answer

Telegram structure:

e: **sAN mLRreqlevelcontroldata** ErrorCode

Telegram part	Description	Variable type	Length	Value range
			(byte)	
Type of command	Answer (SOPAS answer)	string	3	sAN
Command	Data request	string	22	mLRreqlevelcontroldata
ErrorCode	The command has been accepted if the error code 0 is returned.	uint_32	4	00000000h no error FFFFFFFFh ErrorCode

Telegram syntax 111: Answer to the "Data request" request"

Output of the column values

Note The contents of this telegram are sent in Big Endian format.

Telegram structure:Format ResultScaling StartingAngle AngularStepWidth
NumberMeasuredValues ScanningFrequency NumberColumns
ResultColumn_1 StatusColumn_1[ResultColumn_2 StatusColumn_2 ...
ResultColumn_n StatusColumn_n] DigitalInputs DigitalOutputs
AnalogueOutput EncoderPosition ReservedBytesA ReservedBytesB
ScanCounter TelegramCounter SystemCounter

Telegram part		Description	Variable type	Length (byte)	Value range
	Format	Type of measured value output	uint_16	2	0001h Column values
lock	ResultScaling	Scaling of the results in column 1 to n. The values are to be multiplied by this factor.	uint_16	2	0001h
on b	StartingAngle	Information 1/10000 degree	uint_32	4	550000 1250000
nitio	AngularStepWidth	Information 1/10000 degree	uint_16	2	1000 10000
Defi	NumberMeasuredValues	Number of measured values in scan	uint_16	2	1 700
	ScanningFrequency	Information in Hertz	uint_16	2	150 500
	NumberColumns	Number of columns configured	uint_16	2	0 50
	ResultColumn_1	Value measured in the column in millimetres. The value is to be multiplied by ResultScaling.	int_16	2	-32768 32767
Results	StatusColumn_1	Status of the column Several statuses are output by using a logical operator on the values (example 0003 = "Quality not reached" and "no values").	uint_16	2	 0000h Ok 0001h Quality not reached 0002h no values 0004h More than 3000 values in X direction (see "Interval" on page 49)
	ResultColumn_n	See above	int_16	2	See above
	StatusColumn_n	See above	uint_16	2	See above

Tel	egram part	Description	Variable type	Length (byte)	Value range
	DigitalInputs	The least significant byte	uint_16	2	0000h all inputs off
		reflects the state of the digital			0001h input 1 on
		inputs by bit. The least			0002h input 2 on
		significant bit corresponds to			0003h inputs 1 and 2 on
		input 1.			
					000Fh all inputs on
	DigitalOutputs	The least significant byte	uint_16	2	0000h all outputs off
		reflects the state of the digital			0001h output 1 on
		outputs by bit. The least			0002h output 2 on
		significant bit corresponds to			0003h outputs 1 and 2 on
		output 1.			
					000Fh all outputs on
	AnalogueOutput	Output of the state in 10 uA	uint 16	2	
	, maioguo o acpac	steps	unit_10	_	0000h 10 uA
					0014h 20
					0014n 20 μΑ
S					
tatu	EncoderDecition	Information in ticks	wint 10		4E2UN 20 MA
Ŋ			uint_16	2	
	ReservedBytesA	Reserved	uint_16	2	0000h
	ReservedBytesB	Reserved	uint_16	2	0000h
	ScanCounter	Counter, starting with the first	uint_16	2	0000n 0
		measured value output Starts			
		again at 0 when the upper limit			OFFFN 4095
		is reached (= 1. scan).			
	TelegramCounter	Counter starting with the first	uint_16	2	0000h 0
	-	telegram after confirmation of	_		
		the measured value output.			FFFFh 65535
		Starts again at 0 when the upper			
		limit is reached (= 1. telegram).			
	SystemCounter	Enables the relative time	uint_16	2	0000h 0 µs
		difference between two			
		telegrams to be calculated.			FFFFh 21.4745 s
		Information in $1/327.68 \ \mu s$.			
		Starts again at 0 when the upper			

Telegram syntax 112: Column values

Example

Request:sMN mLRreqlevelcontroldata 0000Confirmation:sMA mLRreqlevelcontroldataAnswer:sAN mLRreqlevelcontroldata 0000000Output of the column values:(see Tab. 112)

Output of the switching point states

Telegram structure:

Format ResultScaling StartingAngle AngularStepWidth NumberMeasuredValues ScanningFrequency NumberColumns ResultColumn_1 StatusColumn_1[ResultColumn_2 StatusColumn_2 ... ResultColumn_n StatusColumn_n] DigitalInputs DigitalOutputs AnalogueOutput EncoderPosition ReservedBytesA ReservedBytesB ScanCounter TelegramCounter SystemCounter

Telegram part		Description	Variable type	Length (byte)	Value range
	Format	Defines the type of measured value telegram	uint_16	2	0101h Switching point states
block	ResultScaling	Scaling of the results in column 1 to n. The values are to be multiplied by this factor.	uint_16	2	0001h
tion	StartingAngle	Information 1/10000 degree	uint_32	4	550000 1250000
finit	AngularStepWidth	Information 1/10000 degree	uint_16	2	1000 10000
Dei	NumberMeasuredValues	Number of measured values in scan	uint_16	2	0 700
	ScanningFrequency	Information in Hertz	uint_16	2	150 500
	NumberColumns	Number of columns configured	uint_16	2	0 50
	ResultColumn_1	Status of the switching points configured	uint_8	1	00h not reached 01h exceeded
Results	StatusColumn_1	Status of the column	uint_16	2	 0000h OK 0001h quality not reached 0002h no values 0004h more than 3000 values in X direction (see "Interval" on page 49)
	ResultColumn_n	See above	uint_8	1	See above
	StatusColumn_n	See above	uint_8	1	See above

Tel	egram part	Description	Variable type	Length (byte)	Value range
	DigitalInputs	The least significant byte	uint_16	2	0000h all inputs off
		reflects the state of the digital			0001h input 1 on
		inputs by bit. The least			0002h input 2 on
		input 1			0003h inputs 1 and 2 on
					000Fh all inputs on
	DigitalOutputs	The least significant byte	uint_16	2	0000h all outputs off
		reflects the state of the digital			0001h output 1 on
		outputs by bit. The least			0002h output 2 on
		significant bit corresponds to			0003h outputs 1 and 2 on
		output 1.			
					000Fh all outputs on
	AnalogueOutput	Output of the state in 10 µA	uint 16	2	0000h Ο μΑ
		steps			000Ah 10 µA
					0014b 20 µA
					ουτημ 20 μΑ
S					 4 E20b 20 mA
tatu	EncoderPosition	Information in ticks	uint 16	2	12011 20 MA
S	PeservedBytesA	Reserved	uint_16	2	0000h
	ReservedBytesR	Reserved	uint_16	2	0000h
	SeanCounter	Counter, starting with the first	unit_16	2	
	Scancounter	scan after confirmation of the	unit_10	2	
		measured value output. Starts			 OFFEL 4005
		again at 0 when the upper limit			OFFFII 4095
		is reached (= 1. scan).			
	TelegramCounter	Counter starting with the first	uint_16	2	0000h 0
		telegram after confirmation of			
		the measured value output.			FFFFh 65535
		Starts again at 0 when the upper			
		limit is reached (= 1. telegram).			
	SystemCounter	Enables the relative time	uint_16	2	0000h 0 μs
		difference between two			
		telegrams to be calculated.			FFFFh 21.4745 s
		Information in $1/327.68 \ \mu s$.			
		limit is reached			

Telegram syntax 113: Switching point states

Example

Request:sMIConfirmation:sMIAnswer:sAIOutput of the switching point states:(see

sMN mLRreqlevelcontroldata 0000 sMA mLRreqlevelcontroldata sAN mLRreqlevelcontroldata 00000000 (see *Tab.* 113)

11.14.2 Stop measured value output for Level Control

The measured value output is stopped using a telegram.

Request

Telegram structure:

sMN mLRstoplevelcontroldata

Telegram part	Description	Variable type	Length	Value range
			(byte)	
Type of command	Request (SOPAS method by name)	string	3	sMN
Command	Stop measured value output	string	23	mLRstoplevelcontroldata

Telegram syntax 114: Request "Stop measured value output"

Confirmation

Telegram structure:

sMA mLRstoplevelcontroldata

Telegram part	Description	Variable type	Length	Value range
			(byte)	
Type of command	Confirmation (SOPAS method acknowledge)	string	3	sMA
Command	Stop measured value output	string	23	mLRstoplevelcontroldata

Telegram syntax 115: Confirmation of the "Stop measured value output" request

Answer

Telegram structure: **sAN**

sAN mLRstoplevelcontroldata ErrorCode

Telegram part	Description	Variable type	Length	Value range
			(byte)	
Type of command	Answer (SOPAS answer)	string	3	sAN
Command	Stop measured value output	string	23	mLRstoplevelcontroldata
ErrorCode	The command has been accepted if the error code 0 is returned.	uint_32	4	00000000h no error FFFFFFFFh ErrorCode

Telegram syntax 116: Answer to the "Stop measured value output" request

Example

Request:	sMN mLRstoplevelcontroldata
Confirmation:	sMA mLRstoplevelcontroldata
Answer:	sAN mLRstoplevelcontroldata 0000000

11.15 Ordering information

Ordering information about the LMS400 and its optional accessories is available from the following web product page:

➢ www.sick.com/Ims4xx

11.16 EU Declaration of Conformity

The EU declaration of conformity of the LMS400 with the listed available device variants (according to the type code) and the fullfiled standards is available in PDF format from the following product web page:

➢ www.sick.com/Ims4xx

11.17 Glossary

Note For other terms, see also the online help for the SOPAS ET configuration software.

Aux interface

Auxiliary data interface (RS-232) on the LMS400 with fixed data output format. Using this interface it is always possible to access the LMS400 using the SOPAS ET configuration software. Is used, among other tasks, for the output of system messages and error messages. Can be used with various functions.

Download

Transmission of the parameter set that has been modified offline in the SOPAS ET configuration software from the PC to the LMS400. SOPAS ET transmits either always a complete copy to the memory (RAM) in the LMS400 (menu COMMUNICATION, DOWNLOAD ALL PARAMETERS TO DEVICE) or only the parameter that has just been edited (menu COMMUNICATION, DOWNLOAD MODIFIED PARAMETERS TO DEVICE). With the menu LMS_XX00, PARAMETER, SAVE PERMANENT, the parameter set is saved permanently in the EEPROM of the LMS400.

Field of view α

Angle that defines the limits to which the laser beam is deflected by the polygon mirror wheel. A v-shaped area is formed radially in the scan direction in front of the laser output aperture; this area must contain the objects to be measured.

Host interface

Primary data interface for the LMS400 with data output format that can be configured. Is used, among other tasks, for the output of the measuring result in telegram format to the host/the PLC. Used to integrate the LMS400 in the SICK network. Can be connected electrically as RS-232 or RS-422. Provides various transmission protocols.

Line scanner

Scanner that very rapidly deflects its focused laser beam with the aid of a polygon mirror wheel with mirrors parallel to the axis. In this way the scanner generates a dot of light in the measuring plane that repeatedly runs along a straight line and appears to be a "stationary" scan line due to the relative slow response of the human eye.

Parameter set

Data set using which the functions implemented in the LMS400 are initialised and activated. Is transmitted from the LMS400 to SOPAS ET and in the reverse direction using UPLOAD or DOWNLOAD respectively.

Remission

Remission is the quality of reflection at a surface. The basis is the Kodak standard, known worldwide in, among other areas, photography.

RIS

Remission Information System: The RIS value corresponds to the remission value without application of the scaling factor. It states the reflectivity of the object at the measurement point in percent determined by the system. A small RIS value signifies a low reflectivity (as a rule a dark object). Only distance values with RIS values ≥ 5 (= 10%) are inside the specified range of the LMS400. With RIS values <5 the reliability of the measured result is low.

Scan

A scan encompasses all measured values determined referred to the scanning angle and the speed of rotation of the mirror.

Scan line

See line scanner.

SOPAS ET

Configuration software, can be used with Windows 98/NT 4.0/2000/XP/Vista/7. Is used for the offline configuration (adaptation to the read situation on-site) and the online operation of the LMS400 in the dialog box.

Upload

Transmission of the parameter set from the LMS400 to the PC into the SOPAS ET configuration software. The values for the parameters are displayed on the file cards of the configuration software. Prerequisite for the modification of the current parameter set.

Australia Phone +61 3 9457 0600

1800 334 802 - tollfree E-Mail sales@sick.com.au

Austria

Phone +43 (0)22 36 62 28 8-0 E-Mail office@sick.at

Belgium/Luxembourg Phone +32 (0)2 466 55 66 E-Mail info@sick.be

Brazil Phone +55 11 3215-4900 E-Mail marketing@sick.com.br

Canada Phone +1 905 771 14 44 E-Mail information@sick.com

Czech Republic Phone +420 2 57 91 18 50 E-Mail sick@sick.cz

Chile Phone +56 2 2274 7430 E-Mail info@schadler.com

China Phone +86 4000 121 000 E-Mail info.china@sick.net.cn

Denmark Phone +45 45 82 64 00 E-Mail sick@sick.dk

Finland Phone +358-9-2515 800 F-Mail sick@sick.fi

France Phone +33 1 64 62 35 00 E-Mail info@sick.fr

Gemany Phone +49 211 5301-301 E-Mail info@sick.de Great Britain

Phone +44 (0)1727 831121 E-Mail info@sick.co.uk

Hong Kong Phone +852 2153 6300 E-Mail ghk@sick.com.hk

Hungary Phone +36 1 371 2680 E-Mail office@sick.hu India Phone +91-22-4033 8333 E-Mail info@sick-india.com

Israel Phone +972-4-6881000 E-Mail info@sick-sensors.com Italv

Phone +39 02 27 43 41 E-Mail info@sick.it

Japan Phone +81 (0)3 5309 2112 E-Mail support@sick.jp

Malaysia Phone +603 808070425 E-Mail enquiry.my@sick.com

Netherlands Phone +31 (0)30 229 25 44 E-Mail info@sick.nl

New Zealand Phone +64 9 415 0459 0800 222 278 - tollfree E-Mail sales@sick.co.nz

Norway Phone +47 67 81 50 00 E-Mail sick@sick.no

Poland Phone +48 22 837 40 50 E-Mail info@sick.pl

Romania Phone +40 356 171 120 F-Mail office@sick.ro

Russia Phone +7-495-775-05-30 E-Mail info@sick.ru

Singapore Phone +65 6744 3732 E-Mail sales.gsg@sick.com

Slovakia Phone +421 482 901201 E-Mail mail@sick-sk.sk

Slovenia Phone +386 (0)1-47 69 990 E-Mail office@sick.si

South Africa Phone +27 11 472 3733 E-Mail info@sickautomation.co.za South Korea Phone +82 2 786 6321 E-Mail info@sickkorea.net

Spain Phone +34 93 480 31 00 E-Mail info@sick.es

Sweden Phone +46 10 110 10 00 E-Mail info@sick.se

Switzerland Phone +41 41 619 29 39 E-Mail contact@sick.ch

Taiwan Phone +886 2 2375-6288 E-Mail sales@sick.com.tw

Thailand Phone +66 2645 0009 E-Mail tawiwat@sicksgp.com.sg

Turkey Phone +90 (216) 528 50 00 E-Mail info@sick.com.tr

United Arab Emirates Phone +971 (0) 4 88 65 878 E-Mail info@sick.ae

USA/Mexico Phone +1(952) 941-6780 1 (800) 325-7425 - tollfree E-Mail info@sick.com

Vietnam Phone +84 8 62920204 E-Mail Ngo.Duy.Linh@sicksgp.com.sg

More representatives and agencies at www.sick.com

