Series EE31

HUMIDITY/TEMPERATURE TRANSMITTER

MANUAL

Hardware and Software

YOUR PARTNER IN SENSOR TECHNOLOGY

E+E Elektronik[®] Ges.m.b.H. doesn't accept warranty and liability claims neither upon this publication nor in case of improper treatment of the described products.

The document may contain technical inaccuracies and typographical errors. The content will be revised on a regular basis. These changes will be implemented in later versions. The described products can be improved and changed at any time without prior notice.

© Copyright E+E Elektronik[®] Ges.m.b.H. All rights reserved.

USA FCC notice:

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the installation manual, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

Caution:

Any changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate this device.

CANADIAN ICES-003 notification:

This Device B digital apparatus complies with Canadian ICES-003. Cet appareil numérique de la classe B est conforme à la norme NMB-003 du Canada.

TABLE OF CONTENTS

HARDWARE

1.	GENERAL 1.1 Symbol assertion 1.2 Safety instructions 1.3 Environmental information	4 4 4
2.	PRODUCT DESCRIPTION	4
3.	INSTALLATION 3.1 Mounting Model A 3.2 Mounting Model B 3.3 Mounting Model D, Model H 3.4 Mounting Model E 3.5 Mounting Model F	5 55 66 7
4.	 ELECTRICAL CONNECTIONS 4.1 Connection diagram 4.2 Connection diagram alarm module / Option 4.3 Connection configuration of bottom part of the housing with plug connections 835V DC; 1230V AC (option C03/C07) 4.4 Connection configuration interface cable RS232 / Option 4.5 Connection configuration of bottom part of the housing with integrated power supply 100240V AC (option V01) 	8 8 8 8 8 9
5.	OPERATING COMPONENTS 5.1 Circuit board 5.2 Display module / Option	9 9 10
6.	ALARM MODULE (optional)	11
7.	HUMIDITY/TEMPERATURE CALIBRATION 7.1 2-point humidity calibration 7.2 2-point temperature calibration 7.3 1-point humidity calibration 7.4 1-point temperature calibration 7.5 Resetting to factory calibration	12 13 15 16 17
8.	MAINTENANCE 8.1 Sensor replacement 8.2 Probe replacement 8.3 Fuse replacement 8.4 Cleaning 8.5 Self-diagnosis and error messages	17 18 18 18 18
9.	NETWORK 9.1 RS485 network 9.2 Ethernet-module (option)	20 20 22
10.	SCOPE OF SUPPLY	26
11.	REPLACEMENT PARTS / ACCESSORIES	26
12.	TECHNICAL DATA	27
<u>CO</u>	NFIGURATION SOFTWARE	
1.	GENERAL INFORMATION	30
2.	INSTALLATION	30
3.	ICONS ON THE TOOLS BAR 3.1 File 3.2 Interfaces 3.3 Group 3.4 Transmitter 3.5 ?-Information	31 31 32 32 33
4.	ICON LIST	34
5.	INDEX - INDEX CARDS 5.1 Analogue 5.2 Relay 5.3 Sensor / Probe replacement 5.4 Calibration 5.5 Information	34 35 36 36 38
6.	OVERVIEW 6.1 How to set-up a new transmitter 6.2 How to read the configuration of a transmitter 6.3 How to save the configuration in a transmitter	39 39 39 39

1. GENERAL

The manual is a part of the scope of supply and serves to ensure proper handling and optimum functioning of the instrument. For this reason, the manual must be read before start-up.

In addition, the manual is for all personnel who require knowledge concerning transport, setup, operation, maintenance and repair.

The manual must not be used for the purpose of competition without a written consent from E+E Elektronik® and must also not be forwarded to third parties. Copies for personal use are permitted. All information, technical data and illustrations contained in these instructions are based on information available at the time of publication.

1.1 Symbol assertion

This symbol indicates a safety instruction.

These safety instructions should always be followed carefully. By not following these instructions injuries of persons or material damage could happen. Therefore E+E Elektronik® does not accept liability.

This symbol indicates a note.

These notes should be observed to achieve optimum functioning of the equipment.

1.2 Safety instructions

General Safety Instructions

- Excessive mechanical loads and incorrect usage should always be avoided.
- Take care when unscrewing the filter cap as the sensor element could be damaged.
 - The sensor is an Electro Static Discharge sensitive component (ESD). When touching the sensor element, ESD protective measures should be followed.
 - Grip sensors only at the lead wires.
- Installation, electrical connection, maintenance and commissioning should be performed by qualified personnel only.
- The devices are constructed for the operation of separated extra-low voltage (SELV).

Safety instructions for use of the alarm module with voltages >50V

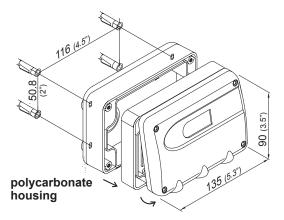
- To insulate the optional alarm module from the low-voltage side of the transmitter, the • partition provided for this purpose must be fitted in the lower section.
- During operation of the instrument the modular housing must be completely closed. The protection class of an opened housing corresponds to IP00 and direct contact with components carrying dangerous voltages is therefore possible. In general, work on live components should be avoided and when absolutely necessary, should be performed by qualified personnel only.

Safety instructions for use of the integrated power supply (option V01)

- During operation of the instrument the modular housing must be completely closed.
- The protection class of an opened housing corresponds to IP00. In general, work on live components should be avoided and when absolutely necessary, should be performed by qualified personnel only.
- The bottom part and the middle part of the housing must be grounded during operation.

1.3 **Environmental aspects**

Equipment from E+E Elektronik[®] is developed with due consideration to all resultant environmental issues. When you dispose the equipment you should avoid environmental pollution.

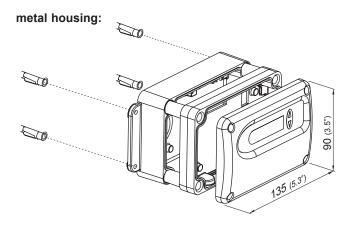

For disposal of the transmitter the individual components must be sorted with care. The housing consists of recyclable polycarbonate or metal (aluminium, Al Si 9 Cu 3). The electronics must be collected as electronic scrap and disposed of according to the regulations in force.

2. **PRODUCT DESCRIPTION**

Humidity/temperature transmitters of the EE31 series provide multifunctionality, highest accuracy and simple installation and maintainance. The modular housing enables a user-friendly operation and a fast replacement of the sensor unit for service purposes.By selecting a suitable housing version the EE31 series can be used for the entire range of humidity measurement applications:

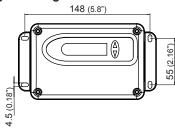
- Model A for wall mounting.
- Model B for duct mounting.
- · Model D, model H with remote sensing probe
- Model E with remote sensing probe for pressure-tight applications up to 20bar (300psi)
- Model F for wall mounting with rear cable outlet.

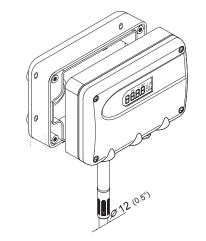
dimensions in mm (")

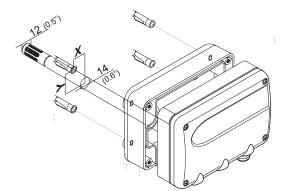


3. INSTALLATION

Mounting of metal and polycarbonate housing


- Drill the mounting holes according to the mounting template. For the polycarbonte housing a special mounting set for installation onto mounting rails is available (see Hardware, chapter 10 "Replacement parts / Accessories").
- **2.** The bottom part of the housing is mounted with 4 screws (screw diameter: < 4.2mm (0.2"); not included in the scope of supply).
- **3.** Connection of the transmitter (see Hardware, chapter 4 "Electrical connections").
- **4.** Mounting of the middle part and cover with 4 screws (included in the scope of supply).


Drilling with round hole:



Ø4.2 (0.16")

Drilling with long hole:

3.1 Mounting of model A (Wall mounting)

For mounting template for metal and polycarbonate housing see above.

Transmitters of the EE31-xAx series are designed for wall mounting. Working range: $-40...60^{\circ}C(-40...140^{\circ}F)$ with display: $-20...50^{\circ}C(-4...122^{\circ}F)$

The transmitter must be mounted with the sensor probe pointing downwards!

3.2 Mounting of model B (Duct mounting)

For mounting template for metal and polycarbonate housing see above.


Positioning of bore holes top left to center line of the probe:

metal housing:	x = 28.5mm (1.1")	y = 37.5mm (1.5")
polycarbonate housing:	x = 20.5mm (0.8")	y = 25.4mm (1")

Transmitters of the EE31-xBx series are designed for duct mounting. Working range: -40...80°C (-40...176°F) with display: -20...50°C (-4...122°F)

The sensor probe must point horizontal or downwards in the duct.

For mounting template for metal and polycarbonate housing see page 5. Transmitters of the EE31-xDx / EE31-xHx series are transmitters with remote sensing probes.

Working range of sensor probe: model D: -40...180°C (-40...356°F)

Working range of electronics: with display:

model D: -40...180 C (-40...356°F model H: -40...80°C (-40...176°F) -40...60°C (-40...140°F) -20...50°C (-4...122°F)

Mounting of the remote sensing probe - model D (12mm):

Using the stainless steel mounting flange (refer to accessories) it is possible to mount the probe on the outer wall of the measuring chamber. The depth of immersion is adjustable.

For roof installations use the drip water protection (refer to accessories) to protect the sensor head and elements against condensed water.

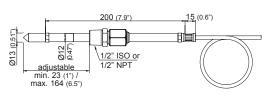
85

(3.3

roof mounting

drip water

protection


bow for draining water of

condensation

The sensor probe must be mounted horizontally or vertically, pointing downwards. When possible, a drip sheet should be fitted for each mounting.

Mounting of the remote sensing probe - model H (5mm):

Incl. mounting fixture for concealed mounting or in tight spaces (e.g. in museums, door frame, etc...). bore diameter: 13mm (0.5") material thickness: min. 3mm (0.1")

dimensions in mm (")

13 (0.5

temperature gradient along , the probe should be avoided

horizontal mounting

stainless steel

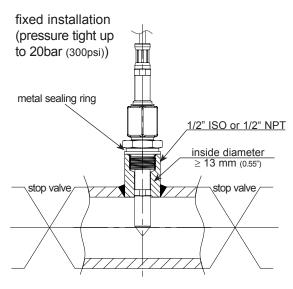
mounting flang

É

3.4 Mounting of model E (with pressure-tight sensor)

For mounting template for metal and polycarbonate housing see page 5. Transmitters of the EE31-xEx series are transmitters with remote, pressure-tight sensor probes that are suitable for applications at pressures between 0.01...20bar (0.15...300psi).

Working range temperature:	-40180°C (-40356°F)
pressure:	0.0120bar (0.15300psi)
Working range of electronics:	-4060°C (-40140°F)
with display:	-2050°C (-4122°F)


The sensor probe must be mounted horizontally or vertically pointing downwards. Where possible, a drip sheet should be fitted for each mounting.

General safety instructions for installation

Because the sensing probe can be exposed to very high pressures in the measurement environment, there is the risk of sudden, unintentional expulsion of the probe during or after improper installation. Therefore, special precautions should be taken when working on the sensing probe or in its vicinity. Bending over the sensing probe should be avoided under any circumstances!

During the installation of the sensor probe, make sure that the surface of the sensing probe is not damaged! Damaging the probe could lead to damaged seals (consequence: leakage and pressure loss) and to problems during removal (jamming).

Installation of the probe directly in the process

For direct probe installation, a stop valve should be provided on both sides of the probe insert. This allows the sensor probe to be removed for maintenance and calibration without any problems.

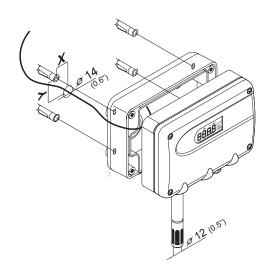
If the sensor probe is installed in a pressure chamber, make sure that the pressure in the chamber and the ambient pressure are in equilibrium before you remove the probe.

The temperature during installation may not vary more than $\pm 4^{\circ}C$ ($\pm 72^{\circ}F$) from the operating temperature.

1st step:

Install the probe with the stop valves closed.

2nd step:


Insert the sensor probe into the process.

3rd step:

To ensure a secure installation of the probe, the lock nut must be tightened to a defined torque of 30 Nm.

If no torque-spanner is available tighten the lock nut by hand

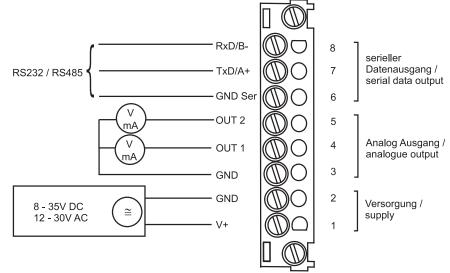
as far as possible. Continue to turn with an open-ended spanner ~50°.

3.5 Mounting of model F (Wall mounting with rear cable outlet)

For mounting template for metal and polycarbonate housing see page 5.

Positioning of boreholes top left to center line of probe:

metal housing:	x = 28.5mm (1.1")	y = 37.5mm (1.5")
polycarbonate housing:	x = 20.5mm (0.8")	y = 25.4mm (1")


Transmitters of the EE31-xFx series are designed for wall mounting. Cable entry is from the rear side (e.g.: clean-room applications...). Working range: $-40...60^{\circ}C$ ($-40...140^{\circ}F$) with display: $-20...50^{\circ}C$ ($-4...122^{\circ}F$)

The transmitter must be mounted with the sensor probe pointing downwards!

4. ELECTRICAL CONNECTIONS

4.1 Connection diagram

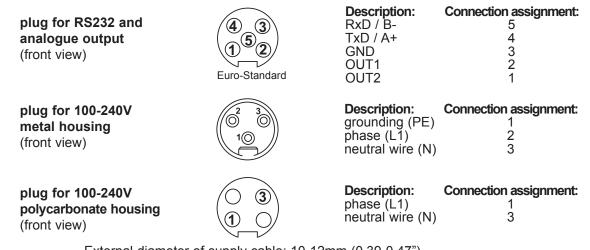
4.2 Alarm module connection diagram / Option

4.3 Connection configuration of bottom part of the housing with plug connections / 8...35V DC; 12...30V AC (option C03/C06/C07/C08)

(4) (1) (1) (1) (2) (3) (2) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3	Description: V+ GND GND OUT1 OUT2	Connection assignment: 5 4 3 2 1
(4) (1) Euro Standard	Description : GND-Ser Rxd/B- Txd/A+ not assigned	Connection assignment: 5 3 1 2.4

The cable should be connected according to the number stamped in the plug as shown in the above drawings!

4.4 Connection configuration interface cable RS232 / Option

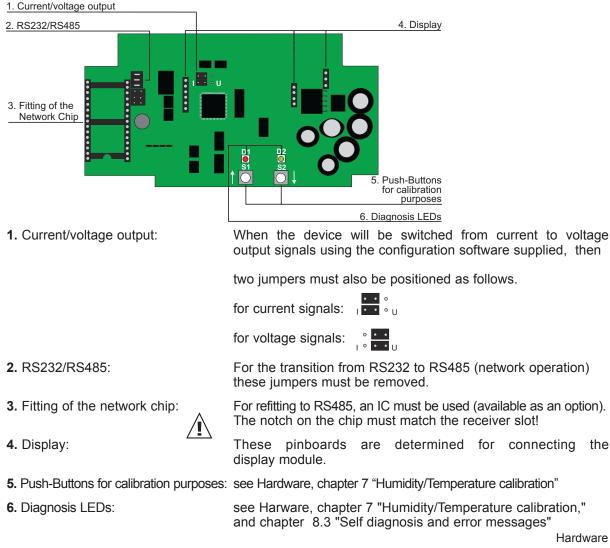

Cable:	Description:
yellow	GND
brown	TXD
white	RXD

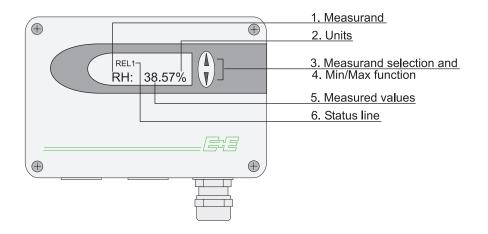
Plug for supply and analogue output (front view)

Plug for RS232 resp. RS484- connection

(front view)

4.5 Connection configuration of bottom part of the housing with integrated power supply / 100...240V AC (option V01)


External diameter of supply cable: 10-12mm (0.39-0.47") Maximum wire cross section for connecting cable: 1.5mm² (AWG 16) The protection of the supply cable against excess current and short-circuit must be designated to a wire cross section of 0.8mm² (AWG 18) (6A fuse). National regulations for installation must be observed!


Bottom and middle part of the metal housing must be grounded during operation!

5. **OPERATING COMPONENTS**

5.1 Circuit board

After removal of the housing cover, the following operating components on the circuit board may be accessed for adaptation of the transmitter to the desired configuration.

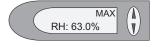

```
1. MEASURAND:
```

2. UNITS:

3. MEASURAND SELECTION:

SI		SI	US		
RH	Rel. humidity	%	%	1	Press the Δ or
Т	Temperature	degC	°F		∇ button to
h	Enthalpy	kJ/kg	ftlbf/lb		select the
r	Mixture ratio	g/kg	gr/lb		desired
dv	Absolute humidity	g/m³	gr/ft	EE31	physical quantity.
Tw	Wet-bulb temperature	degC	°F		quantity
Td	Dew-point temperature	degC	°F		
е	Water vapour partial pres.	mbar	psi		,

4. MIN / MAX FUNCTION:


Transmitters of the EE31 series can display the highest and lowest measured value measured since the last reset.

Highest measured value:

- 1. Select the desired measurand.
- 2. To display the maximum value of the selected measurand, press the Δ button for at least five seconds.
- 3.1.To reset the instrument to its normal operating status, press the Δ button once again for five seconds.
- 3.2.If both buttons are pressed for at least five seconds while the maximum value is displayed → the "MAX" symbol disappears → the maximum value will be deleted (Reset).

Lowest measured value:

- 1. Select the desired measurand.
- 2. To display the minimum value of the selected quantity, press the ∇ button for at least five seconds.
- 3.1.To reset the instrument to its normal operating status, press the ∇ button once again for five seconds.
- 3.2.If both buttons are pressed for at least five seconds while the minimum value is displayed \rightarrow the "MIN" symbol disappears \rightarrow the minimum value will be deleted (Reset).

MIN

RH: 63.0%

T L

5. MEASURED VALUES:

The dominant value of the appropriate quantity is displayed in this field. For the factory configuration, the measured values may fall between the measurement ranges shown below.

		from	up to <i>EE31-A,F</i>	EE31-B	EE31-D.E	units
Humidity	RH	0	100	100	100	% RH
Temperature	Т	-40 (-40)	60 (140)	80 (176)	180 (356)	degC (°F)
Dew-point temperature	Td	-80 (-112)	60 (140)	80 (176)	100 (212)	degC (°F)
Frost-point temperature	Tf	-80 (-112)	0 (32)	0 (32)	0 (32)	degC (°F)
Wet-bulb temperature	Tw	0 (32)	60 (140)	80 (176)	100 (212)	degC (°F)
Water vapour partial pressure	е	0 (0)	200 (3)	500 (7.5)	1100 (15)	mbar (psi)
Mixture ratio	r	0 (0)	425 (2900)	999 (9999)	999 (9999)	g/kg (gr/lb)
Absolute humidity	dv	0 (0)	150 (60)	300 (120)	700 (300)	g/m ³ (gr/f ³)
Specific enthalpy	h	0 (0)	400 (50000)	1000 (375000)	2800 (999999)	kJ/kg (Btu/lb)

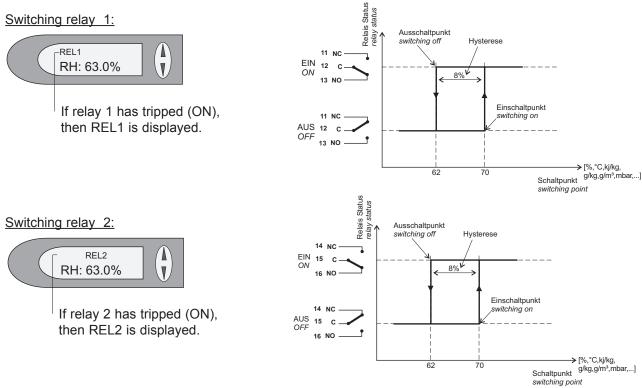
The measurement ranges indicated above can be set to individual requirements using the configuration software supplied (see Configuration software, chapter 5 "Index - Index Cards").

6. STATUS LINE:

- MIN; MAX: see Point "MIN/MAX Function", see Hardware, chapter 5.2 "Display module"
- CALIB LOW; CALIB HIGH: indicates the low or high humidity/temperature calibration point.
- REL1 / REL2: Status Relay
- "ERROR 01....04": see Hardware, chapter 8.5 "Self-diagnosis and error messages"

6. **ALARM MODULE** (optional)

The optional alarm module can be used for alarm and error issues and other simple control functions. This module can be configured using the configuration software supplied. The user thus has the option of setting the measurand to be monitored (RH, T, Td,...) and the threshold hysteresis for each relay. (For the procedure, see the Configuration sofware, chapter 5.2


max. switched voltage / max. switched current: 250 VAC / 6A

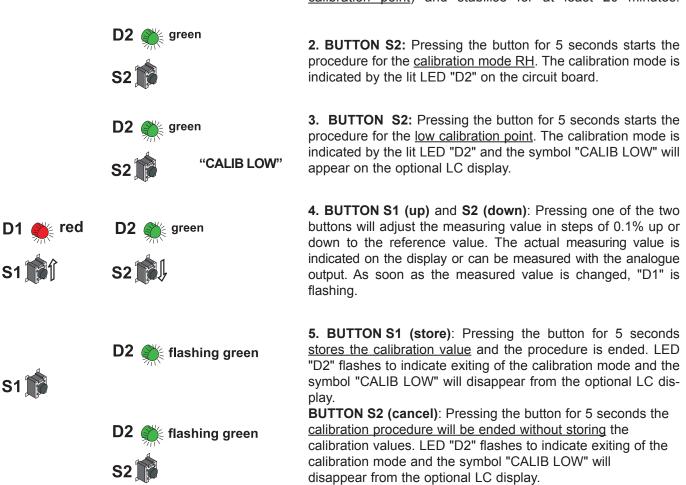
Minimum load:

"Relay")

28 VDC / 6A >100mA / 12V

Switching relay 1:

7. HUMIDITY/TEMPERATURE CALIBRATION


The EE31 transmitter series can be calibrated in two ways.

- 1-point humidity/temperature calibration: quick and simple calibration on a defined humidity/temperature point (working point).
- 2-point humidity/temperature calibration: simple calibration for accurate measuring results over the whole humidity/temperature working range.
 - To reach a temperature balance it is recommended to keep the transmitter and the reference chamber (e.g. HUMOR 20,...) for minimum 4 hours in the same room.
- During stabilisation period and calibration procedure it is important to keep the temperature constant in the reference climate chamber.
- For calibration the humidity sensor probe must be stabilised at least 20 minutes into the reference chamber.
- Replace a used dirty filter cap before calibration!

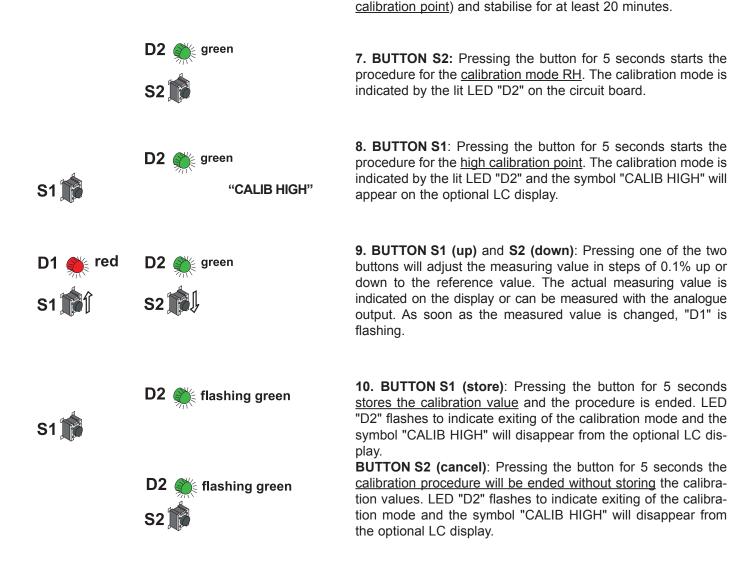
7.1 2-point humidity calibration

For accurate adjustment over the whole working range or in case of sensor exchanges a two point calibration is recommended.

- Start calibration at the low humidity calibration point!
- The humidity difference between the two points should be > 30%RH
- Low humidity point < high humidity point
- . Two point calibration may be performed directly on the circuit board, or for convenience, using the configuration software supplied (for more details, see Configuration Software, chapter 5.4 "Calibration")

2-point humidity calibration procedure on the circuit board!

calibration point) and stabilise for at least 20 minutes.

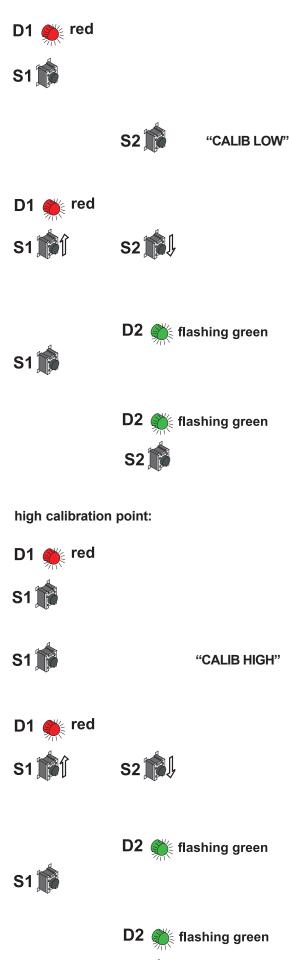

1. Insert the sensor probe into the reference humidity 1 (low

Ī

low calibration point:

high calibration point:

7.2 2-point temperature calibration



- Start calibration at the low calibration point!
- The temperature difference between the two points should be at least 30 degC (86°F)!

6. Insert the sensor probe into the reference humidity 2 (high

- Low temperature point < high temperature point
- <u>Attention:</u> A two point temperature calibration is not supported by the configuration software and must therefore be done directly on the circuit board! (see the following procedure)

low calibration point:

2-point temperature calibration procedure on the circuit board!

1. Insert the sensor probe into the reference temperature 1 (low calibration point) and stabilise for at least 10 minutes.

2. BUTTON S1: Pressing the button for 5 seconds starts the procedure for the <u>calibration mode temperature</u>. The calibration mode is indicated by the lit LED "D1" on the circuit board.

3. BUTTON S2: Pressing the button for 5 seconds starts the procedure for the <u>low calibration point</u>. The calibration mode is indicated by the symbol "CALIB LOW" on the optional LC display.

4. BUTTON S1 (up) and **S2 (down):** Pressing one of the two buttons will adjust the measuring value in steps of 0.1 degC up or down to the reference value. The actual measuring value is indicated on the display or can be measured with the analogue output. As soon as the measured value is changed, "D1" is flashing.

5. BUTTON S1 (store): Pressing the button for 5 seconds stores the calibration value and the procedure is ended. LED "D2" flashes to indicate exiting of the calibration mode and the symbol "CALIB LOW" will disappear from the optional LC display.

BUTTON S2 (cancel): Pressing the button for 5 seconds the <u>calibration procedure will be ended without storing</u> the calibration values. LED "D2" flashes to indicate exiting of the calibration mode and the symbol "CALIB LOW" will disappear from the optional LC display.

6. Insert the sensor probe into the reference temperature 2 (<u>high calibration point</u>) and stabilise for at least 10 minutes.

7. BUTTON S1: Pressing the button for 5 seconds starts the procedure for the <u>calibration mode temperature</u>. The calibration mode is indicated by the lit LED "D1" on the circuit board.

8. BUTTON S1: Pressing the button for 5 seconds starts the procedure for the <u>high calibration point</u>. The calibration mode is indicated by the symbol "CALIB HIGH" on the optional LC display.

9. BUTTON S1 (up) and **S2 (down):** Pressing one of the two buttons will adjust the measuring value in steps of 0.1 degC up or down to the reference value. The actual measuring value is indicated on the display or can be measured with the analogue output. As soon as the measured value is changed, "D1" is flashing.

10. BUTTON S1 (store): Pressing the button for 5 seconds stores the calibration value and the procedure is ended. LED "D2" flashes to indicate exiting of the calibration mode and the symbol "CALIB HIGH" will disappear from the optional LC display.

BUTTON S2 (cancel): Pressing the button for 5 seconds the <u>calibration procedure will be ended without storing</u> the calibration values. LED "D2" flashes to indicate exiting of the calibration mode and the symbol "CALIB HIGH" will disappear from the optional LC display.

7.3 1-point humidity calibration

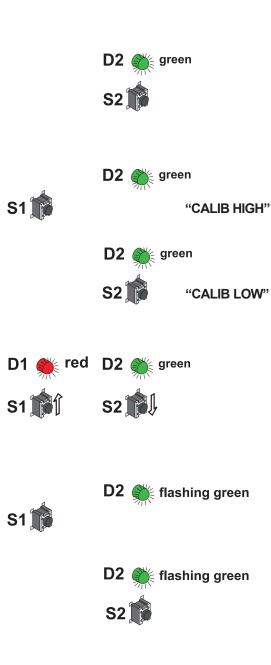
When the working range is limited to a certain more narrow range, a calibration at one humidity point is absolutely sufficient.

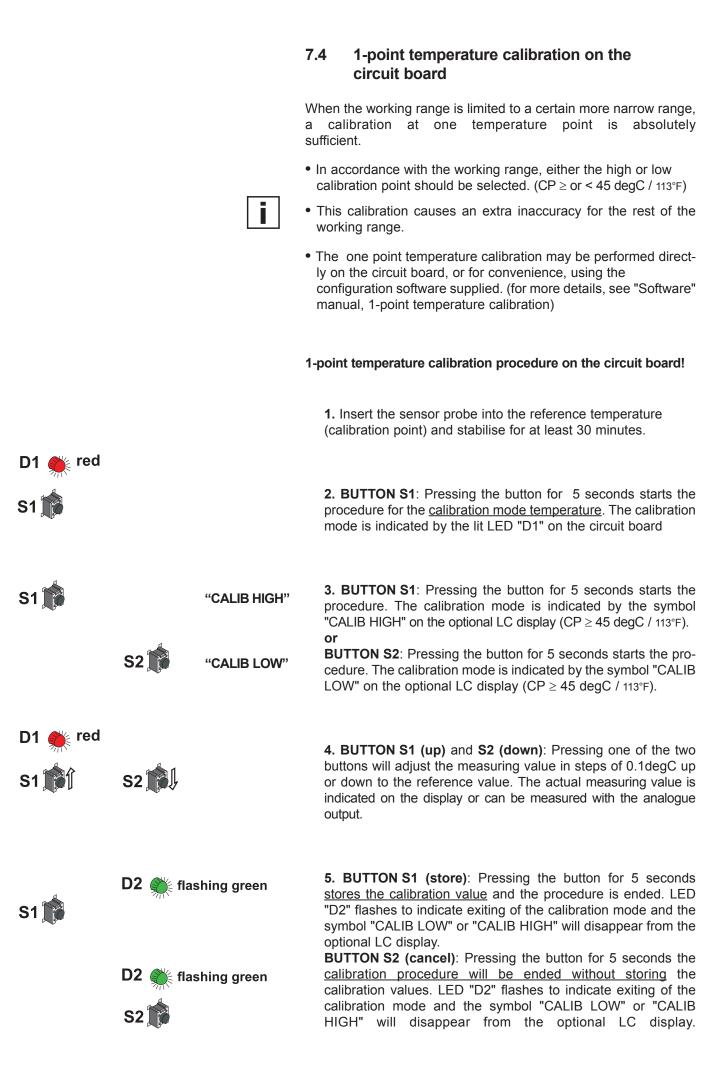
- In accordance with the working range, either the high or low calibration point should be selected. (CP > or < 50% RH)
- This calibration causes an extra inaccuracy for the rest of the working range.
- The one point humidity calibration may be done directly on the circuit board, or for convenience, using the configuration software supplied. (for more details, see the Configuration software, 5.4 "Calibration" / 1-point humidity calibration)

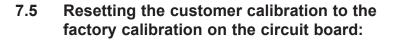
1-point humidity calibration procedure on the circuit board!

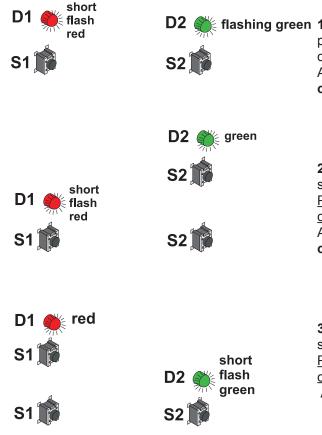
1. Insert the sensor probe into the reference humidity (calibration point) and stabilise for at least 20 minutes.

2. BUTTON S2: Pressing the button for 5 seconds starts the procedure for the <u>calibration mode RH</u>. The calibration mode is indicated by the lit LED "D2" on the circuit board.


3. BUTTON S1: Pressing the button for 5 seconds starts the procedure. The calibration mode is indicated by the lit LED "D2" and the symbol "CALIB HIGH" will appear on the optional LC display (CP = 50% RH).


BUTTON S2: Pressing the button for 5 seconds starts the procedure. The calibration mode is indicated by the lit LED "D2" and the symbol "CALIB LOW" will appear on the optional LCD (CP < 50% RH).


4. BUTTON S1 (up) and **S2 (down)**: Pressing one of the two buttons will adjust the measuring value in steps of 0.1% up or down to the reference value. The actual measuring value is indicated on the display or can be measured with the analogue output.


5. BUTTON S1 (store): Pressing the button for 5 seconds stores the calibration value and the procedure is ended. LED "D2" flashes to indicate exiting of the calibration mode and the symbol "CALIB LOW" or "CALIB HIGH" will disappear from the optional LC display.

BUTTON S2 (cancel): Pressing the button for 5 seconds the <u>calibration procedure will be ended without storing</u> the calibration values. LED "D2" flashes to indicate exiting of the calibration mode and the symbol "CALIB LOW" or "CALIB HIGH" will disappear from the optional LC display.

flashing green 1. <u>RH + T RESET:</u> BUTTON S1 and S2: In neutral mode pressing both buttons simultaneously for 10 seconds customer calibration settings are reset to factory calibration. A short flash of the LED "D1" indicates the reset. or

2. <u>RH RESET:</u> BUTTON S2: Pressing the button for 5 seconds starts the <u>procedure for the calibration mode RH</u>. <u>Pressing both buttons simultanously for 10 seconds customer calibration settings are reset to factory calibration</u>. A short flash of the LED "D1" indicates the reset. **or**

3. <u>Temp. RESET:</u> BUTTON S1: Pressing the button for 5 seconds starts the <u>procedure for the calibration mode T.</u> <u>Pressing both buttons simultanously for 10 seconds customer calibration settings are reset to factory calibration.</u> A short flash of the LED "D2" indicates the reset.

8. MAINTENANCE

8.1 Sensor replacement

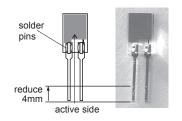
Under several circumstances, the capacitive humidity sensor element can get damged. To avoid the costly return of the entire transmitter to the manufacturer, easy replacement of the sensor with re-adjustment is possible. <u>Note:</u>

- This will invalidate the factory calibration.

- The sensor elements should be touched by the lead wires only. (use tweezers)

8.1.1 Sensor replacement of pluggable sensors

Sensor replacement procedure:


- 1) Switch off supply voltage.
- 2) Unscrew the filter cap carefully.
- 3) Pull out the humidity sensor element.
- 4) Put in the new humidity sensor, the active side has to face the inside (see drawing).
- 5) Screw the filter cap on again. (in case of pollution replace it by a new filter cap)
- 6) Establish connection to PC (RS232).
- 7) Switch on the supply voltage.
- 8) Start configuration software on PC.
- 9) For further instructions, see Configuration software, chapter 5.3 "Sensor/Probe replacement".

8.1.1 Sensor replacement of soldered sensors

Sensor replacement procedure:

- 1) Switch off supply voltage.
- 2) Unscrew the filter cap carefully.
- 3) Desolder the humidity sensor element.
- 4) Shorten the sensor legs of the replacement sensor with a side cutter at 4mm (0.16") (from 10mm / 0.39" to 6mm / 0.24"), see drawing.
- 5) Solder in the new humidity sensor, the active side has to face the inside (see drawing).
- 6) Screw on the filter cap carefully (in case of pollution replace it by a new filter cap).
- 7) Establish connection to PC (RS232).
- 8) Switch on supply voltage.
- 9) Start configuration software on PC.
- 10) For further instructions, see Configuration software, chapter 5.3 "Sensor/Probe replacement".

8.2 Sensor probe replacement / optional

Transmitters of the EE31-xDx and xEx series are available with an optional remote sensor probe that can be plugged into the middle section of the housing. If the sensor probe gets damaged (damage to the cable, mechanical destruction of the sensor probe) it is possible to replace the probe with re-adjustment.

Note: This will invalidate the factory calibration.

Sensor probe replacement procedure:

- 1) Switch off supply voltage.
- 2) Remove damaged sensor probe.
- 3) Plug replacement probe onto middle section of the housing.
- 4) Establish connection to PC (RS232).
- 5) Switch on power supply voltage.
- 6) Start configuration software on PC.
- 7) For further instructions, see Configuration software, chapter 5.3 "Sensor/Probe replacement"

8.3 Fuse replacement for option V01

If the green LED on the PCB is not flashing with the supply voltage switched on, check the fuse and replace if required.

Fuse secondary:250mA / T UL248-14Nominal voltage:250VReplacement types:250VSeries: MSTU 250Manufacturer: SchurterOrder No.: 0034.7109 Series: 374Manufacturer: LittelfuseOrder No.: 374 0250

8.4 Cleaning

E+E sensing elements are highly robust which makes cleaning very easy. Shake the sensing elements for max. 2 min. in industrial Isopropyl alcohol and after that in water. Let them dry free. Do not touch or rub the active surface of the sensing elements!

8.5 Self diagnosis and error messages:

Self diagnosis via LEDs on the circuit board:

Green LED

flashing \Rightarrow Supply voltage applied / Microprocessor is active

<u>Red LED</u>

constantly lit \Rightarrow Humidity sensor element damaged

flashing \Rightarrow Humidity sensor element accruing moist (condensation!)

Self diagnosis via display (where available):

- Error 1 \Rightarrow Humidity sensor element damaged
- Error 2 \Rightarrow Humidity sensor element moistened (condensation!)
- Error 3 \Rightarrow Temperature sensor element damaged
- Error 4 \Rightarrow Temperature input short circuit

Definitions:

- <u>Error</u> possible cause
 - \Rightarrow Measures / Help

• Display shows incorrect values

- Error during re-adjustment of the transmitter
- \Rightarrow Reset to factory calibration and repeat the calibration routine
- Filter soiled
- \Rightarrow Replace filter
- Sensor defective
- \Rightarrow Replace sensor

Output configured incorrectly

 \Rightarrow PC - Software

Long response time

Filter soiled

 \Rightarrow Replace filter

Incorrect filter type

 \Rightarrow Filter type should match the application

<u>Transmitter failure</u>

no supply voltage

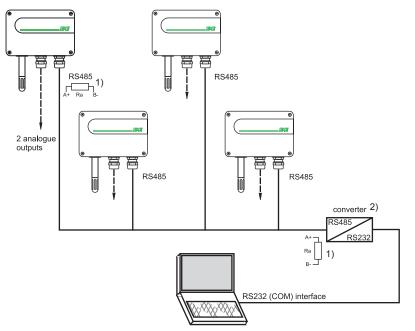
- \Rightarrow Check wiring and supply voltage
- \Rightarrow only green LED is illuminated continuously \Rightarrow Electronics defect \Rightarrow contact the manufacturer

High humidity values - red LED blinks

Dew (condensation) in sensor probe head

 \Rightarrow Dry probe head and check the sensor probe mounting type

Incorrect filter type (e.g. storage of humidity after stainless steel sintered filter condensation) \Rightarrow *Filter type should match the application*


9. NETWORK

9.1 RS485 Network

Up to 32 EE31 transmitters (additional "N" in order code) can be connected in a RS-485 bus system to a single PC interface.

Using the software which is included in the scope of supply the transmitters can be configurated individually or in the entire network group.

Network configuration:

- 1) Note: to enable optimum expansion, both ends of the network must be terminated with a terminating resistorwith Ra 100 Ohm.
- 2) Note: to adapt the RS232 interface on the PC to the RS485 network protocol, a signal converter is required.

Technical Data:

- Max. network size:

- Transmission rate:

- Max. network expansion:

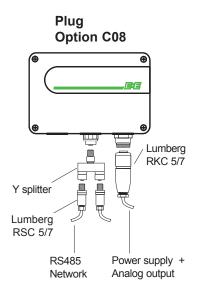
32 transmitters / COM-PORT of PC 1200m (3937ft) total length 9600 Baud

Mounting notes:

Data cables:

- external diameter < 4mm (0.16")

- 2-core twisted pair
- Typ. 50 pF/m, impedance 100 Ohm, non-shielded
- In accordance with the RS485 standard, cables in category 5 (UTP), specified according to EIA/TIA/ANSI 568, meet these requirements.



For high noise emissions, especially for large cable lengths, the use of shielded cables is recommended. (Shield laid at GND Ser)

<u>Plug connecors:</u> To achieve a more flexible network configuration, the transmitters should be equipped with plug connectors. (Option C08)

For the network configuration, the following plug connectors are also necessary:

- Y splitter: Siemens 6ES7 194-1KA01-0XA0
- Plug: Lumberg RSC 5/7

RS232/485	Converter:
10202/400	<u>oonvortor.</u>

To adapt the RS232 interface on the PC to the RS485 network protocol, a signal converter (see schematic, page 19, point 2) is required.

USB to RS232 converter:

- For connecting an EE31 transmitter to an USBinterface, following USB to R232 converter had been tested under MS Windows 2000[®]:
 - inside out networks: edgeport/1 1 port USB to RS-232 converter
 - keyspan: high speed usb serial adapter (p/n: USA-19QW)

9.2 Ethernet - Module (Option)

An additional PCB, located in the bottom part of the housing, allows the EE31-series to be connected to a standardized 10/100 MBit-Ethernet network.

The standardized interface allows to integrate the transmitters in a network. It is than possible to communicate from several remote workstations and the central administration with different transmitters.

Attention: Use the Harting RJ Industrial IP67 Push Pull

Connector - in the scope of supply - or identical types only!

It is possible that the conventional RJ45 connectors, typically used in office environments, cannot be removed from RJ Industrial IP67 bushing!

9.2.1 Electrical Connection / Operating Components

Screw Terminals: supply voltage: 8-35V DC, 12-30V AC 1 GND / ~ 2 V+ / ~

<u>Power - LED (Red):</u> LED glowing = power supply on

LNK (Link) - LED (Green): LED glowing = connection with Ethernet switch established

<u>ACT (Active)- LED (Green):</u> LED flashing = data transfer active

<u>RESET- button:</u> Press reset button for 3-5 seconds and the Ethernet module will be reset (the microcontroller is restarted). The LNK-LED is temporary off.

<u>DHCP / STATIC - Jumper:</u> The jumper setting (DHCP / Static) determines the way the IP-address is assigned.

DHCP: IP-address will be assigned automatically by the DHCP server STATIC: IP-address will be assigned manually by the network administrator

What is preferred / technical possible, should be discussed with the network administrator. For further details please refer to chapter "9.2.3 Ethernet-interface".

9.2.2 Technical data:

- 10/100 MBit Ethernet Interface RJ45 (Harting IP67 Push-Pull bushing)
- Cable length from transmitter to Ethernet-Switch: max. 100m
- Recommended type of cable: Harting ProfiNet Cat5-cable STP 2x2xAWG22/7
- Max. number of transmitters in a network: unlimited

9.2.3 Ethernet-interface

9.2.3.1 ComCenter

ComCenter (Communication Center) software is the communication link between the transmitter, the Ethernet-network and the existing EE31 configuration-, data logging- and visualization software.

The ComCenter provides the following functions:

Discovery tool:

ComCenter supports the detection and administration (Web-Interface) of all transmitters in the network.

Creation of virtual interfaces (Com-Ports):

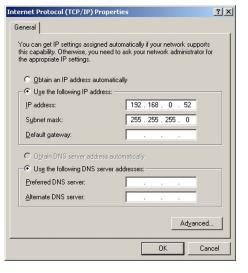
ComCenter allows to assign each and every detected IP-address (e.g. transmitter) with a corresponding virtual interface (Com-Port). With MS Windows[®] not more than 255 virtual Com-Ports are possible!

<u>Communication with existing EE31 configuration-, data logging and visualization software:</u> The created virtual Com-Ports can be addressed by the existing EE31 configuration-, data logging and visualization software, as long as the ComCenter software is running (active).

9.2.3.2 Installation of the ComCenter

- Insert Ethernet CD-Rom into your CD-ROM drive
- Choose "Install ComCenter Ethernet Software"
- Run the setup.exe
- Choose language and follow the installation wizard
- Complete installation

9.2.3.3 Ethernet Connection


- Connect the transmitter to the Ethernet-network using the provided Harting RJ Industrial IP67 Push Pull Connector and a standardized Ethernet Cat5-cable.
- Hook up the Ethernet module with the supply voltage (8...48VDC / 12...35VAC), Power LED glowing, LNK - LED glowing.
- Choose mode of IP-address assignment (DHCP /STATIC) by jumper setting at the Ethernet module.

DHCP:

- Change jumper setting to DHCP.
- Press reset-button for 3-5 seconds (LNK LED temporary off).
- Ethernet module changes to DHCP mode and requests an IP address from the DHCP server.
- Transmitter will be detected as soon as ComCenter is active.

STATIC:

- Default jumper setting is STATIC.
- Factory settings for the transmitters are the static IP address 192.168.0.64 with the subnet-mask 255.255.255.0
- Networking settings of the used personal computer might need to be changed in order to use same subnet-mask (255.255.250) as the connected transmitter.

e (Wat	mmunio Help :ch Client et <u>C</u> lients show <u>E</u> nc	5	Center ¥1.00.001			
	IP ad	dress	Name	last receive	COM	Туре
1	- 1 1	.214	EETRE0900E	0 min 4 sec		End Device
2		.56	EETRE00009	0 min 4 sec		End Device
3		.212	EETRE0900C	0 min 4 sec		End Device
		.186	EETRE00006	0 min 4 sec		End Device
4		.100				

E.g. Windows XP - Start / Settings / Network Connections / Local Area Connection / General / Properties / Internet Protocol (TCP/IP) / Properties

Note:

In case of further questions about the assignment of IP-addresses in DHCP or STATIC mode kindly contact the network administrator. Otherwise please do not hesitate to contact E+E Elektronik for support.

9.2.3.4 Working with the ComCenter

Open ComCenter by either using the corresponding icon on the desktop or the path defined during the installation.

Check the box "show End Devices only". In the list only EE31 transmitters (End Devices) within the network will be shown.

Note:

If the box "show End Devices only" is not checked the ComCenter will show all other network devices as well (e.g. PC's).

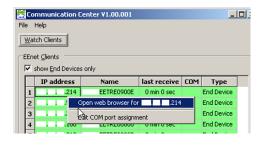
Press the button "Watch Clients" and the time passed since the last successful communication with each network device is recorded and listed. If a network device can not be reached, it will be highlighted in red!

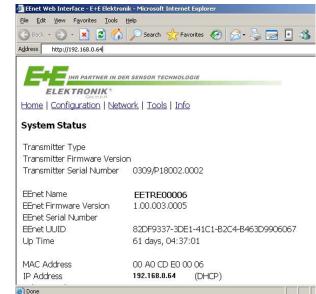
With a click of the right mouse button either the <u>web-interface</u> or the editor for <u>Com-Port assignment</u> can be selected.

Web-Interface:

Home: Overview of system settings

<u>Configuration:</u> EENet Name: LAN name of the selected transmitter (End Device) can be defined / changed


<u>Transmission Mode:</u> Transparent: fast transmission of data bytes via Ethernet (high network load)


EE31 Protocol Frames: standard setting (low network load)

<u>IP-Address Assignment:</u> STATIC: IP-address is manually assigned DHCP: IP-address is assigned by DCHP server

<u>Tools:</u> Possibility to either introduce or change the passwords for each and every transmitter (End Device)

Info: Contact address of the manufacturer

Edit COM Port assignment

_		enter #1.00.001			_	-
ile I	Help					
Wat	ch Clients					
	or clores 1					
EEne	et <u>C</u> lients					
v :	show End Devices	s only				
	IP address	Name	last receive	COM	Туре	
		EETRE0900E	0 min 4 sec		End Device	
2		pen web browser for			End Device	
3		die course and and			End Device	
4	Late compore absignmente					
H-H	L L	7			End Device	
5	213	EETRE0900D	0 min 4 sec		End Device	

Enter a desired Com-Port number (1...255). The Com-Port number will be assigned to the corresponding IP-address.

🖶 Computer Management	
 ■ File Action View Window He ← → € III B ⊕ 2 II ■ Computer Management (Local) 	elpX 3 ≪ X 8 □, TESTPC
 System Tools Event Viewer Shared Folders Local Users and Groups Performance Logs and Alert: Device Manager Storage Storage Disk Defragmenter Disk Management Services and Applications 	Computer Compu

Note:

If a number of an existing Hardware Com-Port (COM1, COM2) is entered, than this will be assigned. Otherwise a virtual Com-Port will be created.

Attention:

ComCenter needs to be active (running) as long as the virtual Com-Ports are in use!

If the ComCenter window is minimized, it will be hidden in the "System Tray" (right bottom, next to the system time), but it remains active (running)!

9.2.3.5 Communication without ComCenter

Transmitters with an Ethernet module can also be used straight without the ComCenter.

Please contact E+E Elektronik if you need information regarding the EE31 protocol for Ethernet communication.

10. SCOPE OF SUPPLY

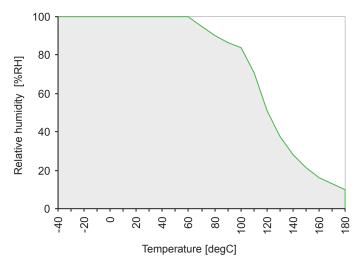
	Included in all versions	According to ordering guide
EE31 according to ordering guide	х	
Manual EE31 German/English/French	х	
EE-PCA configuration software	х	
Inspection certificate according to DIN EN 10204 – 3.1	х	
Allen key 3.0		only for metal housing
Data logging and visualization software		N / E
Mating plug for integrated power supply		V01
Mating plug RKC 5/7		V01 / C03 / C08
Y-junction for network connection		C08 & N
Mating plug RSC 5/7		C06 / C08
M16 Cable gland metal		except C03, C06, C08, V01

11. REPLACEMENT PARTS / ACCESSORIES:

Description	Order code
 Filter Sintered stainless steel filter PTFE Filter Metal grid filter 	HA010103 HA010105 HA010106
- Display + housing cover in metal - Display + housing cover in polycarbonate	D05M D05P
 Replacement probe for EE31-xDx with 2 m cable for EE31-xDx with 5 m cable for EE31-xDx with 10 m cable for EE31-xDx with 20 m cable for EE31-xEx with 2 m cable for EE31-xEx with 5 m cable for EE31-xEx with 5 m cable for EE31-xEx with 20 m cable 	P02D P05D P10D P20D P02E P05E P10E P20E
 Replacement sensors Replacement humidity sensor Replacement humidity sensor with coating Replacement temperature sensor with sensor data 	FE09 FE09-HC01 TE38
 Interface cable for PCB Interface cable for plug C06 	HA010304 HA010311
- Mounting flange (stainless steel) - Mounting flange 5mm (for EE31, model H only)	HA010201 HA010208
- Bracket for fixing onto mounting rails	HA010203
- Drip water protection	HA010503
- 1% calibration	EE90/3H
- Datalogging and analysis software (for EE31 only)	HA010602
- RS485 Kit (HW + SW) for networking (for EE31 only)	HA010601

12. **TECHNICAL DATA:**

Technical Data EE31


Measurement values

Relative humidity Humidity sensor ¹⁾			HC1000-400	/ HC104	5				
Working range ¹⁾			0100% RH						
Accuracy *) (including hyster	esis non-lineari	ty and rep							
-1540°C (5104°F)	≤90% RH	ty and rop	± (1.3 + 0.3%	.*mv) %	RH				
-1540°C (5104°F)	>90% RH		± 2.3% RH	,, ,0					
-2570°C (-13158°F)			± (1.4 + 1%*n	mv) % F	Я				
-40180°C (-40356°F			<u>± (1.5 + 1.5%</u>						
Temperature dependence of			$\pm (1.3 \pm 1.3\%)$ typ. ± 0.01%						
		/+	< 15s		0.0055%	КП/Г)			
Response time with metal g	no niter at 20 C	/ l ₉₀	< 155						
Temperature Temperature sensor element	EE31-xA/B/C	C/F/Gx	Pt1000 (Toler						
	EE31-xHx		Pt1000 (Toler						
Working range sensing head	d EE31	1-xAx -40.	60°C (-40140°F)		EE31-	-xBx -40.	80°C (-4	0176°F)	
			.180°C (-40356°F)		EE31-	xEx -40.	180°C (-	40356°F)	
	EE31	1-xFx -40.	60°C (-40140°F	=)	EE31-	-xHx -40.	80°C (-4	0176°F)	
Accuracy (typ.)									
Δ-C 0.8	EE31-xA/B/D/E/Fx		_		∆°C 0.6]		EE31-xH	x	
0.5 -					0.5				
0.4 -					0.4 -				
0.3					0.3 -		\searrow		
0.2 -					0.2 -				
0	+ + + + + + + + + + + + + + + + + + + +			°C	0	+ + + +			+
-40 -30 -20 -1	10 0 10 20 30 40 50 60	0 70 80 90 100 1	10 120 130 140 150 160 170 18	30 0	-0.1 -40	30 -20 -10 0	10 20 30	40 50 60	70 80
-0,2 —					-0.2 —		\frown		
-0.3					-0.3 —	/			
-0.4 —					-0.4 —				
-0.5 —					-0.5				
-0.6 —					-0.6				
Temperature dependence of	f electronics		typ. ± 0.005°0	C/°C					
uts ²⁾			71						
Two freely selectable and sca	leable analogue								
		outputs	0 - 5V		-1m/	A < L < 1	MA		
0100% RH / xxvv°C rest	pectively	outputs	0 - 5V 0 - 10V		-1m/ -1m/	A < I _L < 1 A < I _L < 1	mA mA		
0100% RH / xxyy°C resp	pectively	outputs			-1m/	A < I ₁ < 1	mA		
0100% RH / xxyy°C resp	pectively	outputs	0 - 10V 4 - 20mA		-1m/ R _L <	A < I _L < 1 500 Ohr	mA n		
0100% RH / xxyy°C resp	pectively	outputs	0 - 10V 4 - 20mA 0 - 20mA		-1m/ R _L <	A < I ₁ < 1	mA n		
0100% RH / xxyy°C resp Serial interface	pectively	outputs	0 - 10V 4 - 20mA 0 - 20mA RS232C	nal	-1m/ R _L <	A < I _L < 1 500 Ohr	mA n		
0100% RH / xxyy°C resp Serial interface	pectively	outputs	0 - 10V 4 - 20mA 0 - 20mA	nal	-1m/ R _L <	A < I _L < 1 500 Ohr	mA n		
0100% RH / xxyy°C resp	t range ²⁾³⁾		0 - 10V 4 - 20mA 0 - 20mA RS232C RS485 option	nal	-1m/ R _L <	A < I _L < 1 500 Ohr	mA n		
0100% RH / xxyy°C resp Serial interface	t range ²⁾³⁾	from	0 - 10V 4 - 20mA 0 - 20mA RS232C RS485 option up to		-1m/ R _L < R _L <	A < I _L < 1 500 Ohr 500 Ohr	mA n n	units	;
0100% RH / xxyy°C resp Serial interface adjustable measurement	t range ²⁾³⁾	from	0 - 10V 4 - 20mA 0 - 20mA RS232C RS485 option up to EE31-A,F	EE31	-1m/ R _L <	A < I _L < 1 500 Ohr 500 Ohr EE31	mA n n		
0100% RH / xxyy°C resp Serial interface adjustable measurement Humidity	t range ²⁾³⁾	from	0 - 10V 4 - 20mA 0 - 20mA RS232C RS485 option up to EE31-A,F 100	<i>EE</i> 31 100	-1m/ RL < RL <	A < I _L < 1 500 Ohr 500 Ohr EE31- 100	mA n -D,E	% RH	1
0100% RH / xxyy°C resp Serial interface adjustable measurement Humidity Temperature	t range ²⁾³⁾	from 0	0 - 10V 4 - 20mA 0 - 20mA RS232C RS485 option up to <i>EE31-A,F</i> 100 60 (140)	EE31 100 80	-1m/ RL < RL <	A < I _L < 1 500 Ohr 500 Ohr <u>EE31</u> . 100 180	mA n - <i>D,E</i> (356)	% RH °C	(°F)
0100% RH / xxyy°C resp Serial interface adjustable measurement Humidity Temperature Dew-point temperature	t range ²⁾³⁾	from 0 -40 (-40) -80 (-112)	0 - 10V 4 - 20mA 0 - 20mA RS232C RS485 option up to <i>EE31-A,F</i> 100 60 (140) 60 (140)	EE31 100 80 80	-1m/ RL < RL < 1-B, H (176) (176)	A < I _L < 1 500 Ohr 500 Ohr EE31- 100 180 100	mA n - <i>D,E</i> (356) (212)	% RF °C °C	(°F)(°F)(°F)
0100% RH / xxyy°C resp Serial interface adjustable measurement Humidity Temperature Dew-point temperature Frost-point temperature	RH T Tf	from 0 -40 (-40) -80 (-112) -80 (-112)	0 - 10V 4 - 20mA 0 - 20mA RS232C RS485 option up to <i>EE31-A,F</i> 100 60 (140) 60 (140) 0 (32)	EE31 100 80 80 0	-1m/ RL < RL < (1-B, H (176) (176) (32)	A < I _L < 1 500 Ohr 500 Ohr 500 Ohr EE31- 100 180 100 0	mA n - <i>D,E</i> (356) (212) (32)	% RF °C °C °C	(°E) (°E) (°E)
0100% RH / xxyy°C resp Serial interface adjustable measurement Humidity Temperature Dew-point temperature Erost-point temperature Wet-bulb temperature	RH T Tf Tw	from 0 -40 (-40) -80 (-112) -80 (-112) 0 (32)	0 - 10V 4 - 20mA 0 - 20mA RS232C RS485 option up to <i>EE31-A,F</i> 100 60 (140) 60 (140) 0 (32) 60 (140)	EE31 100 80 80 0 80	-1m/ RL < RL < (1-B, H (176) (176) (32) (176)	A < I _L < 1 500 Ohr 500 Ohr 500 Ohr 100 180 100 0 100	mA n -D,E (356) (212) (32) (212)	% R⊢ °C °C °C °C	(°F) (°F) (°F) (°F)
0100% RH / xxyy°C resp Serial interface adjustable measurement Humidity Temperature Dew-point temperature Erost-point temperature Wet-bulb temperature Water vapour partial pressure	RH T Td Tf Tw e e	from 0 -40 (-40) -80 (-112) -80 (-112) 0 (32) 0 (0)	0 - 10V 4 - 20mA 0 - 20mA RS232C RS485 option up to <i>EE31-A,F</i> 100 60 (140) 60 (140) 0 (32) 60 (140) 200 (3)	EE31 100 80 80 0 80 500	-1m/ RL < RL < (1-B, H (176) (176) (32)	A < IL < 1 500 Ohr 500 Ohr 500 Ohr 500 Ohr 100 100 100 1100	mA n - <i>D,E</i> (356) (212) (32)	% RF °C °C °C	(°F) (°F) (°F) (°F)
0100% RH / xxyy°C resp Serial interface adjustable measurement Humidity Temperature Dew-point temperature Frost-point temperature Wet-bulb temperature Water vapour partial pressure Mixture ratio	RH (T	from 0 -40 (-40) -80 (-112) -80 (-112) 0 (32) 0 (0) 0 (0)	0 - 10V 4 - 20mA 0 - 20mA RS232C RS485 option up to <i>EE31-A,F</i> 100 60 (140) 60 (140) 0 (32) 60 (140) 200 (3) 425 (2900)	EE31 100 80 80 0 80 80 500 999	-1m/ RL < RL < (176) (176) (176) (176) (176) (175) (9999)	A < IL < 1 500 Ohr 500 Ohr 500 Ohr EE31 100 180 100 100 100 999	mA n - <i>D,E</i> (356) (212) (32) (212) (15) (9999)	% RH °C °C °C °C mbar g/kg	(°E) (°E) (°E) (°E) (°E) (psi) (gr/lt
0100% RH / xxyy°C resp Serial interface adjustable measurement Humidity Temperature Dew-point temperature Frost-point temperature Wet-bulb temperature Water vapour partial pressure Mixture ratio Absolute humidity	RH (T Td T Td Tf Tw (e e (dv (from -40 (-40) -80 (-112) -80 (-112) 0 (32) 0 (0) 0 (0) 0 (0)	0 - 10V 4 - 20mA 0 - 20mA RS232C RS485 option up to <i>EE31-A,F</i> 100 60 (140) 60 (140) 0 (32) 60 (140) 200 (3) 425 (2900) 150 (60)	EE31 100 80 80 0 80 500 999 300	-1m/ RL < RL < (1-B, H (176) (176) (32) (176) (32) (176) (32) (176) (39999) (120)	A < IL < 1 500 Ohr 500 Ohr 500 Ohr 500 Ohr 100 180 100 0 100 999 700	mA n - <i>D,E</i> (356) (212) (32) (212) (15) (9999) (300)	% R⊢ °C °C °C °C mbar g/kg g/m³	(°F) (°F) (°F) (°F) (psi) (gr/lt
0100% RH / xxyy°C resp Serial interface adjustable measurement Humidity Temperature Dew-point temperature Frost-point temperature Wet-bulb temperature Water vapour partial pressure Mixture ratio	RH (T Td T Td Tf Tw (e e (dv (from 0 -40 (-40) -80 (-112) -80 (-112) 0 (32) 0 (0) 0 (0)	0 - 10V 4 - 20mA 0 - 20mA RS232C RS485 option up to <i>EE31-A,F</i> 100 60 (140) 60 (140) 0 (32) 60 (140) 200 (3) 425 (2900)	EE31 100 80 80 0 80 500 999 300	-1m/ RL < RL < (176) (176) (176) (176) (176) (175) (9999)	A < IL < 1 500 Ohr 500 Ohr 500 Ohr 500 Ohr 100 180 100 0 100 999 700	mA n - <i>D,E</i> (356) (212) (32) (212) (15) (9999)	% RH °C °C °C °C mbar g/kg	(°F) (°F) (°F) (°F) (psi) (gr/lt
0100% RH / xxyy°C resp Serial interface adjustable measurement Humidity Temperature Dew-point temperature Erost-point temperature Wet-bulb temperature Water vapour partial pressure Mixture ratio Absolute humidity Specific enthalpy	RH (T Td T Td Tf Tw (e e (dv (from -40 (-40) -80 (-112) -80 (-112) 0 (32) 0 (0) 0 (0) 0 (0)	0 - 10V 4 - 20mA 0 - 20mA RS232C RS485 option up to <i>EE31-A,F</i> 100 60 (140) 60 (140) 0 (32) 60 (140) 200 (3) 425 (2900) 150 (60)	EE31 100 80 80 0 80 500 999 300	-1m/ RL < RL < (1-B, H (176) (176) (32) (176) (32) (176) (32) (176) (39999) (120)	A < IL < 1 500 Ohr 500 Ohr 500 Ohr 500 Ohr 100 180 100 0 100 999 700	mA n - <i>D,E</i> (356) (212) (32) (212) (15) (9999) (300)	% R⊢ °C °C °C °C mbar g/kg g/m³	(°F) (°F) (°F) (°F) (psi) (gr/lt
0100% RH / xxyy°C resp Serial interface adjustable measurement Humidity Temperature Dew-point temperature Erost-point temperature Wet-bulb temperature Water vapour partial pressure Mixture ratio Absolute humidity Specific enthalpy	RH (T Td T Td Tf Tw (e e (dv (from -40 (-40) -80 (-112) -80 (-112) 0 (32) 0 (0) 0 (0) 0 (0)	0 - 10V 4 - 20mA 0 - 20mA RS232C RS485 option up to <i>EE31-A,F</i> 100 60 (140) 60 (140) 0 (32) 60 (140) 200 (3) 425 (2900) 150 (60) 400 (50000)	EE31 100 80 0 80 500 999 300 1000	-1m/ RL < RL < (176) (176) (176) (176) (176) (176) (7.5) (9999) (120) (375000)	A < I _L < 1 500 Ohr 500 Ohr 500 Ohr 500 Ohr 100 100 100 100 999 700 2800	mA n n -D,E (356) (212) (32) (212) (15) (9999) (300) (999999)	% RH °C °C °C °C mbar g/kg g/m ³ kJ/kg	(°F) (°F) (°F) (°F) (psi) (gr/lt
0100% RH / xxyy°C resp Serial interface adjustable measurement Humidity Temperature Dew-point temperature Erost-point temperature Wet-bulb temperature Water vapour partial pressure Mixture ratio Absolute humidity Specific enthalpy	RH (T Td T Td Tf Tw (e e (dv (from -40 (-40) -80 (-112) -80 (-112) 0 (32) 0 (0) 0 (0) 0 (0)	0 - 10V 4 - 20mA 0 - 20mA RS232C RS485 option up to <i>EE31-A,F</i> 100 60 (140) 0 (32) 60 (140) 0 (32) 60 (140) 200 (3) 425 (2900) 150 (60) 400 (50000) SELV 835V	EE31 100 80 0 80 500 999 300 1000	-1m/ RL < RL < (176) (176) (176) (176) (176) (176) (176) (176) (176) (176) (176) (32) (176) (32) (176) (375000)	A < I _L < 1 500 Ohr 500 Ohr 500 Ohr 500 Ohr 100 100 100 100 100 2800 2800 LV = Safety	mA n n - <i>D,E</i> (356) (212) (212) (15) (9999) (300) (999999) Extra Low	% RH °C °C °C mbar g/kg g/m ³ kJ/kg	(°E) (°E) (°E) (°E) (psi) (gr/lt (gr/f ² (Btu/
0100% RH / xxyy°C resp Serial interface adjustable measurement Humidity Temperature Dew-point temperature Erost-point temperature Water vapour partial pressure Mixture ratio Absolute humidity Specific enthalpy rral Supply voltage	trange 2)3) RH T Td Tf Tw Q r dv h	from -40 (-40) -80 (-112) -80 (-112) 0 (32) 0 (0) 0 (0) 0 (0)	0 - 10V 4 - 20mA 0 - 20mA RS232C RS485 option up to <i>EE31-A,F</i> 100 60 (140) 0 (32) 60 (140) 0 (32) 60 (140) 200 (3) 425 (2900) 150 (60) 400 (50000) SELV 835V SELV 1230	EE31 100 80 0 80 500 999 300 1000 7 DC V AC	-1m/ RL < RL < (1-B, H (176) (A < I _L < 1 500 Ohr 500 Ohr 500 Ohr 500 Ohr 100 100 100 100 999 700 2800	mA n n - <i>D,E</i> (356) (212) (212) (15) (9999) (300) (999999) Extra Low	% RH °C °C °C mbar g/kg g/m ³ kJ/kg	(°E) (°E) (°E) (°E) (psi) (gr/lt (gr/f ² (Btu/
0100% RH / xxyy°C resp Serial interface adjustable measurement Humidity Temperature Dew-point temperature Erost-point temperature Water vapour partial pressure Mixture ratio Absolute humidity Specific enthalpy ral Supply voltage Current consumption - 2x v	t range ²⁾³⁾ RH T Td Tf Tw e dv h voltage output	from -40 (-40) -80 (-112) -80 (-112) 0 (32) 0 (0) 0 (0) 0 (0)	0 - 10V 4 - 20mA 0 - 20mA RS232C RS485 option up to <i>EE31-A,F</i> 100 60 (140) 0 (32) 60 (140) 0 (32) 60 (140) 200 (3) 425 (2900) 150 (60) 400 (50000) SELV 835V	EE31 100 80 0 500 999 300 1000 7 DC V AC C: typ	-1m/ RL < RL < (1-B, H (176) (176) (176) (176) (176) (120) (375000) SE (0 (0 . 40mA	A < I _L < 1 500 Ohr 500 Ohr 500 Ohr 500 Ohr 100 100 100 100 100 2800 2800 LV = Safety	mA n n - <i>D,E</i> (356) (212) (212) (15) (9999) (300) (999999) Extra Low	% RH °C °C °C mbar g/kg g/m ³ kJ/kg	(°E) (°E) (°E) (°E) (psi) (gr/lt (gr/f ² (Btu/
0100% RH / xxyy°C resp Serial interface adjustable measurement Humidity Temperature Dew-point temperature Erost-point temperature Water vapour partial pressure Mixture ratio Absolute humidity Specific enthalpy ral Supply voltage Current consumption - 2x v	trange 2)3) RH T Td Tf Tw Q r dv h	from -40 (-40) -80 (-112) -80 (-112) 0 (32) 0 (0) 0 (0) 0 (0)	0 - 10V 4 - 20mA 0 - 20mA RS232C RS485 option up to <i>EE31-A,F</i> 100 60 (140) 0 (32) 60 (140) 0 (32) 60 (140) 200 (3) 425 (2900) 150 (60) 400 (50000) SELV 835V SELV 1230' for 24V DC/A	EE31 100 80 0 80 500 999 300 1000 7 DC V AC C: typ typ	-1m/ RL < RL < (1-B, H (176) (176) (176) (176) (176) (175) (19999) (120) (375000) (375000) SE (0] . 40mA . 80mA	A < I _L < 1 500 Ohr 500 Ohr 500 Ohr 500 Ohr 100 100 100 100 100 2800 2800 ELV = Safety ptional 10	mA n n - <i>D,E</i> (356) (212) (32) (212) (15) (9999) (300) (999999) Extra Low	% R⊢ °C °C °C mbar g/kg g/m ³ kJ/kg Voltage / AC, 50/f	(°E) (°E) (°E) (°E) (°E) (gr/li (gr/f ² (Btu/
0100% RH / xxyy°C resp Serial interface adjustable measurement Humidity Temperature Dew-point temperature Erost-point temperature Water vapour partial pressure Mixture ratio Absolute humidity Specific enthalpy sral Supply voltage Current consumption - 2x v - 2x c	t range ²⁾³⁾ RH (1) T	from -40 (-40) -80 (-112) -80 (-112) 0 (32) 0 (0) 0 (0) 0 (0) 0 (0)	0 - 10V 4 - 20mA 0 - 20mA RS232C RS485 option up to <i>EE31-A,F</i> 100 60 (140) 0 (32) 60 (140) 200 (3) 425 (2900) 150 (60) 400 (50000) SELV 835V SELV 1230' for 24V DC/A for 100-240V/	EE31 100 80 80 500 999 300 1000 7 DC V AC .C: typ. AC: typ.	-1m/ RL < RL < (1-B, H (176) (176) (176) (176) (176) (175) (19999) (120) (375000) (375000) (375000) SE (0] (40mA . 80mA . 2VA	A < I _L < 1 500 Ohr 500 Ohr 500 Ohr 500 Ohr 100 100 100 100 100 2800 2800 ELV = Safety ptional 10	mA n n - <i>D,E</i> (356) (212) (32) (212) (15) (9999) (300) (999999) Extra Low	% RH °C °C °C mbar g/kg g/m ³ kJ/kg	(°E) (°E) (°E) (°E) (°E) (gr/li (gr/f ² (Btu/
0100% RH / xxyy°C resp Serial interface adjustable measurement Humidity Temperature Dew-point temperature Erost-point temperature Water vapour partial pressure Mixture ratio Absolute humidity Specific enthalpy rral Supply voltage Current consumption - 2x v	t range ²⁾³⁾ RH (1) T	from -40 (-40) -80 (-112) -80 (-112) 0 (32) 0 (0) 0 (0) 0 (0) 0 (0)	0 - 10V 4 - 20mA 0 - 20mA RS232C RS485 option up to <i>EE31-A,F</i> 100 60 (140) 0 (32) 60 (140) 0 (32) 60 (140) 200 (3) 425 (2900) 150 (60) 400 (50000) SELV 835V SELV 1230' for 24V DC/A	EE31 100 80 80 500 999 300 1000 7 DC V AC .C: typ. AC: typ.	-1m/ RL < RL < (1-B, H (176) (176) (176) (176) (176) (175) (19999) (120) (375000) (375000) (375000) SE (0] (40mA . 80mA . 2VA	A < I _L < 1 500 Ohr 500 Ohr 500 Ohr 500 Ohr 100 100 100 100 100 2800 2800 ELV = Safety ptional 10	mA n n - <i>D,E</i> (356) (212) (32) (212) (15) (9999) (300) (999999) Extra Low	% R⊢ °C °C °C mbar g/kg g/m ³ kJ/kg Voltage / AC, 50/f	(°E) (°E) (°E) (°E) (psi) (gr/f (Btw 60Hz
0100% RH / xxyy°C resp Serial interface adjustable measurement Humidity Temperature Dew-point temperature Erost-point temperature Water vapour partial pressure Mixture ratio Absolute humidity Specific enthalpy rral Supply voltage Current consumption - 2x v - 2x c	t range ²⁾³⁾ RH T Td Tf Td Tf dv h voltage output current output tight probe	from -40 (-40) -80 (-112) -80 (-112) 0 (32) 0 (0) 0 (0) 0 (0) 0 (0)	0 - 10V 4 - 20mA 0 - 20mA RS232C RS485 option up to <i>EE31-A,F</i> 100 60 (140) 60 (140) 0 (32) 60 (140) 200 (3) 425 (2900) 150 (60) 400 (50000) SELV 835V SELV 1230' for 24V DC/A for 100-240V/ 0.0120bar (i	EE31 100 80 0 80 500 999 300 1000 7 DC V AC C: typ typ AC: typ 0.15300	-1m/ RL < RL < (1-B, H (176) (176) (176) (176) (175) (175) (19999) (120) (375000) SE (04 (04) (04) (04) (04) (04) (04) (04)	A < I _L < 1 500 Ohr 500 Ohr 500 Ohr 500 Ohr 100 100 100 100 100 2800 2800 ELV = Safety ptional 10	mA n n - <i>D,E</i> (356) (212) (32) (212) (15) (9999) (300) (999999) Extra Low	% R⊢ °C °C °C mbar g/kg g/m ³ kJ/kg Voltage / AC, 50/6	(°E) (°E) (°E) (°E) (°E) (gr/li (gr/li (gr/li (Btu
0100% RH / xxyy°C resp Serial interface adjustable measurement Humidity Temperature Dew-point temperature Erost-point temperature Water vapour partial pressure Water vapour partial pressure Mixture ratio Absolute humidity Specific enthalpy eral Supply voltage Current consumption - 2x v - 2x c Pressure range for pressure	t range ²⁾³⁾ RH T Td Tf Td Tf dv h voltage output current output tight probe	from -40 (-40) -80 (-112) -80 (-112) 0 (32) 0 (0) 0 (0) 0 (0) 0 (0)	0 - 10V 4 - 20mA 0 - 20mA RS232C RS485 option up to <i>EE31-A,F</i> 100 60 (140) 60 (140) 0 (32) 60 (140) 200 (3) 425 (2900) 150 (60) 400 (50000) SELV 835V SELV 1230' for 24V DC/A for 100-240V/ 0.0120bar (0)	EE31 100 80 80 500 999 300 1000 7 DC V AC C: typ typ AC: typ 0.15300 000 or 1	-1m/ RL < RL < (1-B, H (176) (176) (176) (176) (176) (175) (175) (175) (120) (375000) (120) (375000) SE (0) (375000) (0) (375000) (0) (375000) (0) (120) (120) (375000) (120)	A < I _L < 1 500 Ohr 500 Ohr 500 Ohr 500 Ohr 100 100 100 100 100 100 100 10	mA n n - <i>D,E</i> (356) (212) (32) (212) (15) (9999) (300) (999999) Extra Low	% R⊢ °C °C °C mbar g/kg g/m ³ kJ/kg Voltage / AC, 50/6	(°E) (°E) (°E) (°E) (°E) (gr/li (gr/li (gr/li (Btu
0100% RH / xxyy°C resp Serial interface adjustable measurement Humidity Temperature Dew-point temperature Erost-point temperature Water vapour partial pressure Water vapour partial pressure Mixture ratio Absolute humidity Specific enthalpy eral Supply voltage Current consumption - 2x v - 2x o Pressure range for pressure System requirements for sof Housing / protection class	t range ²⁾³⁾ RH T Td Tf Td Tf dv h voltage output current output tight probe	from -40 (-40) -80 (-112) -80 (-112) 0 (32) 0 (0) 0 (0) 0 (0) 0 (0)	0 - 10V 4 - 20mA 0 - 20mA RS232C RS485 option up to <i>EE31-A,F</i> 100 60 (140) 60 (140) 0 (32) 60 (140) 200 (3) 425 (2900) 150 (60) 400 (50000) SELV 835V SELV 1230' for 24V DC/A for 100-240V/ 0.0120bar (WINDOWS 2 PC or Al Si 9	EE31 100 80 0 80 500 999 300 1000 7 DC V AC .C: typ typ AC: typ 0.15300 000 or I Cu 3 / J	-1m/ RL < RL < (1-B, H (176) (177) (176) (176) (176) (176) (176) (176) (177) (177) (177) (177) (176) (A < I _L < 1 500 Ohr 500 Ohr 500 Ohr 500 Ohr 100 100 100 100 100 100 2800 ELV = Safety ptional 10 al interfac a 4	mA n n - <i>D,E</i> (356) (212) (32) (212) (15) (9999) (300) (999999) • Extra Low 00240V	% R⊢ °C °C mbar g/kg g/m³ kJ/kg Voltage / AC, 50/6	(°E) (°E) (°E) (°E) (°E) (gr/li (gr/li (Btu/
0100% RH / xxyy°C resp Serial interface adjustable measurement Humidity Temperature Dew-point temperature Erost-point temperature Water vapour partial pressure Water vapour partial pressure Mixture ratio Absolute humidity Specific enthalpy ral Supply voltage Current consumption - 2x v - 2x c Pressure range for pressure System requirements for sof Housing / protection class Cable gland	t range ²⁾³⁾ RH T Td Tf Td Tf dv h voltage output current output tight probe	from -40 (-40) -80 (-112) -80 (-112) 0 (32) 0 (0) 0 (0) 0 (0) 0 (0)	0 - 10V 4 - 20mA 0 - 20mA RS232C RS485 option up to <i>EE31-A,F</i> 100 60 (140) 60 (140) 0 (32) 60 (140) 200 (3) 425 (2900) 150 (60) 400 (50000) SELV 835V SELV 1230' for 24V DC/A for 100-240V/ 0.0120bar (WINDOWS 2 PC or Al Si 9 M16 x 1.5	EE31 100 80 0 80 500 999 300 1000 7 DC V AC .C: typ typ AC: typ 0.15300 000 or I Cu 3 / J cable	-1m/ RL < RL < (1-B, H (176) (A < I _L < 1 500 Ohr 500 Ohr 500 Ohr 500 Ohr 100 100 100 100 100 100 100 10	mA n n - <i>D,E</i> (356) (212) (212) (15) (9999) (300) (999999) Extra Low 00240V	% R⊢ °C °C mbar g/kg g/m³ kJ/kg Voltage / AC, 50/6	(°E) (°E) (°E) (°E) (°E) (gr/li (gr/li (Btu/
0100% RH / xxyy°C resp Serial interface adjustable measurement Humidity Temperature Dew-point temperature Erost-point temperature Water vapour partial pressure Water vapour partial pressure Mixture ratio Absolute humidity Specific enthalpy eral Supply voltage Current consumption - 2x v - 2x o Pressure range for pressure System requirements for sof Housing / protection class Cable gland Electrical connection	t range ²⁾³⁾ RH (1) Td (2) Td (2) Td (2) Td (2) Td (2) Control (2) r	from 0 -40 (-40) -80 (-112) -80 (-112) 0 (32) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)	0 - 10V 4 - 20mA 0 - 20mA RS232C RS485 option up to <i>EE31-A,F</i> 100 60 (140) 60 (140) 0 (32) 60 (140) 200 (3) 425 (2900) 150 (60) 400 (50000) SELV 835V SELV 1230' for 24V DC/A for 100-240V/ 0.0120bar (WINDOWS 2 PC or Al Si 9 M16 x 1.5 screw termina	EE31 100 80 0 80 500 999 300 1000 7 DC V AC .C: typ typ AC: typ 0.15300 000 or I Cu 3 / J cable als up to	-1m/ RL < RL < (1-B, H (176) (A < I _L < 1 500 Ohr 500 Ohr 500 Ohr 500 Ohr 100 100 100 100 100 100 100 10	mA n n - <i>D,E</i> (356) (212) (212) (15) (9999) (300) (999999) Extra Low 00240V	% R⊢ °C °C mbar g/kg g/m³ kJ/kg Voltage / AC, 50/6	(°E) (°E) (°E) (°E) (psi) (gr/f (Btu/
0100% RH / xxyy°C resp Serial interface adjustable measurement Humidity Temperature Dew-point temperature Erost-point temperature Water vapour partial pressure Water vapour partial pressure Mixture ratio Absolute humidity Specific enthalpy ral Supply voltage Current consumption - 2x v - 2x c Pressure range for pressure System requirements for sof Housing / protection class Cable gland	t range ²⁾³⁾ RH (1) Td (2) Td (2) Td (2) Td (2) Td (2) Control (2) r	from 0 -40 (-40) -80 (-112) -80 (-112) 0 (32) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)	0 - 10V 4 - 20mA 0 - 20mA RS232C RS485 option up to <i>EE31-A,F</i> 100 60 (140) 60 (140) 0 (32) 60 (140) 200 (3) 425 (2900) 150 (60) 400 (50000) SELV 835V SELV 1230' for 24V DC/A for 100-240V/ 0.0120bar (WINDOWS 2 PC or Al Si 9 M16 x 1.5 screw termina -4060°C (-40	EE31 100 80 0 80 500 999 300 1000 7 DC V AC .C: typ typ AC: typ 0.15300 000 or I Cu 3 / J cable als up to 0140°F)	-1m/ RL < RL < (176) (175) (120) (120) (175) (120) (12) (120)	A < I _L < 1 500 Ohr 500 Ohr 500 Ohr 500 Ohr 100 100 100 100 100 100 100 10	mA n n - <i>D,E</i> (356) (212) (212) (15) (9999) (300) (999999) Extra Low 00240V	% R⊢ °C °C mbar g/kg g/m³ kJ/kg Voltage / AC, 50/6	(°E) (°E) (°E) (°E) (°E) (gr/li (gr/li (Btu/
0100% RH / xxyy°C resp Serial interface adjustable measurement Humidity Temperature Dew-point temperature Erost-point temperature Water vapour partial pressure Water vapour partial pressure Mixture ratio Absolute humidity Specific enthalpy eral Supply voltage Current consumption - 2x v - 2x o Pressure range for pressure System requirements for sof Housing / protection class Cable gland Electrical connection Working and storage temper	trange 2)3) RH T Td Tf Td Tf dv of dv h voltage output current output tight probe ftware rature range of e	from 0 -40 (-40) -80 (-112) -80 (-112) 0 (32) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)	0 - 10V 4 - 20mA 0 - 20mA RS232C RS485 option up to <i>EE31-A,F</i> 100 60 (140) 60 (140) 0 (32) 60 (140) 200 (3) 425 (2900) 150 (60) 400 (50000) SELV 835V SELV 1230' for 24V DC/A for 100-240V/ 0.0120bar (WINDOWS 2 PC or Al Si 9 M16 x 1.5 screw termina -4060°C (-40 -2050°C (-4)	EE31 100 80 0 80 500 999 300 1000 7 DC V AC .C: typ typ AC: typ 0.15300 000 or I Cu 3 / J cable als up to 0140°F) 122°E)	-1m/ RL < RL < (176) (177) (176) (17	A < I _L < 1 500 Ohr 500 Ohr 500 Ohr 500 Ohr 100 100 100 100 100 100 100 10	mA n n - <i>D,E</i> (356) (212) (32) (212) (32) (32) (9999) (99999) • Extra Low 00240V 00240V	% R⊢ °C °C mbar g/kg g/m³ kJ/kg Voltage / AC, 50/6	(°E) (°E) (°E) (°E) (psi) (gr/l (gr/l (Btu/
0100% RH / xxyy°C resp Serial interface adjustable measurement Humidity Temperature Dew-point temperature Erost-point temperature Water vapour partial pressure Water vapour partial pressure Mixture ratio Absolute humidity Specific enthalpy eral Supply voltage Current consumption - 2x v - 2x o Pressure range for pressure System requirements for sof Housing / protection class Cable gland Electrical connection	trange 2)3) RH T Td Tf Td Tf dv of dv h voltage output current output tight probe ftware rature range of e	from 0 -40 (-40) -80 (-112) -80 (-112) 0 (32) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)	0 - 10V 4 - 20mA 0 - 20mA RS232C RS485 option up to <i>EE31-A,F</i> 100 60 (140) 60 (140) 0 (32) 60 (140) 200 (3) 425 (2900) 150 (60) 400 (50000) SELV 835V SELV 1230' for 24V DC/A for 100-240V/ 0.0120bar (WINDOWS 2 PC or Al Si 9 M16 x 1.5 screw termina -4060°C (-40 -2050°C (-41 EN61326-1	EE31 100 80 0 80 500 999 300 1000 7 DC V AC C: typ 0.15300 000 or I Cu 3 / J cable als up to 0140°F) 122°F) - EN	-1m/ RL < RL < (1-B, H (176) (177) (176) (176) (176) (176) (177) (17	A < I _L < 1 500 Ohr 500 Ohr 500 Ohr 500 Ohr 100 100 100 100 100 100 100 10	mA n n - <i>D,E</i> (356) (212) (32) (212) (32) (212) (32) (9999) (300) (99999) Extra Low 00240V 00240V B E E E E E E E E E E E E E E E E E E	% RH °C °C °C mbar g/kg g/m³ kJ/kg Voltage / AC, 50/6	(°E) (°E) (°E) (°E) (psi) (gr/l (gr/l (Btu/
0100% RH / xxyy°C resp Serial interface adjustable measurement Humidity Temperature Dew-point temperature Erost-point temperature Water vapour partial pressure Water vapour partial pressure Mixture ratio Absolute humidity Specific enthalpy eral Supply voltage Current consumption - 2x v - 2x o Pressure range for pressure System requirements for sof Housing / protection class Cable gland Electrical connection Working and storage temper	trange 2)3) RH T Td Tf Td Tf dv of dv h voltage output current output tight probe ftware rature range of e	from 0 -40 (-40) -80 (-112) -80 (-112) 0 (32) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)	0 - 10V 4 - 20mA 0 - 20mA RS232C RS485 option up to <i>EE31-A,F</i> 100 60 (140) 60 (140) 0 (32) 60 (140) 200 (3) 425 (2900) 150 (60) 400 (50000) SELV 835V SELV 1230' for 24V DC/A for 100-240V/ 0.0120bar (WINDOWS 2 PC or Al Si 9 M16 x 1.5 screw termina -4060°C (-40 -2050°C (-4)	EE31 100 80 0 80 500 999 300 1000 7 DC V AC C: typ 0.15300 000 or I Cu 3 / J cable als up to 0140°F) 122°F) - EN	-1m/ RL < RL < (1-B, H (176) (177) (176) (176) (176) (176) (177) (17	A < I _L < 1 500 Ohr 500 Ohr 500 Ohr 500 Ohr 100 100 100 100 100 100 100 10	mA n n - <i>D,E</i> (356) (212) (32) (212) (32) (32) (9999) (99999) • Extra Low 00240V 00240V	% RH °C °C °C mbar g/kg g/m³ kJ/kg Voltage / AC, 50/6	(°E) (°E) (°E) (°E) (psi) (gr/f (Btu/
0100% RH / xxyy°C resp Serial interface adjustable measurement Humidity Temperature Dew-point temperature Erost-point temperature Water vapour partial pressure Water vapour partial pressure Mixture ratio Absolute humidity Specific enthalpy eral Supply voltage Current consumption - 2x v - 2x o Pressure range for pressure System requirements for sof Housing / protection class Cable gland Electrical connection Working and storage temper	trange 2)3) RH T Td Tf Td Tf dv of dv h voltage output current output tight probe ftware rature range of e	from 0 -40 (-40) -80 (-112) 0 (32) 0 (0) 0 (0) 0 (0) 0 (0) 	0 - 10V 4 - 20mA 0 - 20mA RS232C RS485 option up to <i>EE31-A,F</i> 100 60 (140) 60 (140) 0 (32) 60 (140) 200 (3) 425 (2900) 150 (60) 400 (50000) SELV 835V SELV 1230' for 24V DC/A for 100-240V/ 0.0120bar (WINDOWS 2 PC or Al Si 9 M16 x 1.5 screw termina -4060°C (-40 -2050°C (-41 EN61326-1	EE31 100 80 0 80 500 999 300 1000 ' DC V AC C: typ 0.15300 000 or I Cu 3 / J cable als up to 0140°F) 122°F) - EN vironmer	-1m/ RL < RL < (1-B, H (176) (17	A < I _L < 1 500 Ohr 500 Ohr 500 Ohr 500 Ohr 100 100 100 100 100 100 100 10	mA n n - <i>D,E</i> (356) (212) (32) (212) (300) (99999) Extra Low 00240V e e 8 - 0.39") G 16) lay C Part15	% RH °C °C °C mbar g/kg g/m ³ kJ/kg Voltage / AC, 50/f	(°E) (°E) (°E) (°E) (°E) (gr/li (gr/li (gr/li (Btu

Technical Data for Options EE31

Display	• •	cal LCD (128x32 pixels), with integrated push ecting parameters and MIN/MAX function	n-buttons
Integrated power supply		240V AC, 50/60Hz	
Alarm outputs	250V	switch contact AC / 6A IC / 6A	
Threshold + hysteresis	can be	e adjusted with configuration software	
Switching parameters	freely	selectable between:	EE31
	RH	Relative humidity	\checkmark
	Т	Temperature	\checkmark
	Td	Dew-point temperature	\checkmark
	Τf	Frost-point temperature	\checkmark
	Tw	Wet-bulb temperature	\checkmark
	е	Water vapour partial pressure	\checkmark
	r	Mixture ratio	\checkmark
	dv	Absolute humidity	\checkmark
	h	Specific enthalpy	\checkmark

Operating range humidity sensor

The gray area shows the allowed measurement range for the humidity sensor.

Operating points outside of this range do not lead to destruction of the element, but the specified measurement accuracy cannot be guaranteed.

CONFIGURATION SOFTWARE

LIMITED LIABILITY

E+E Elektronik[®] is not liable for any damages or consequential damages (for example, but not restricted to loss of earnings, interruption of business, loss of information and data or any other pecuniary damages), that result from the installation, usage and also impossibility of usage of a software product from E+E Elektronik[®] and supportservices possibly associated with it or non-performance of support.

1. GENERAL INFORMATION

The configuration software was developed by E+E Elektronik Ges.m.b.H to allow fast and easy configuration of individual transmitters as well as of transmitter networks.

This software tool is included in delivery.

System requirements: MS WINDOWS 98[®] or higher; RS232 serial interface

2. INSTALLATION

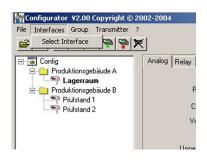
Insert the CD-ROM supplied with the transmitter into your PC and open the set-up application. Follow the instructions of the dialogue menus to set the desired language and all further parameter for installation. At the end of the routine, the software is installed and the Readme file or the program will be automatically opened.

Note:

If the configuration software has already been installed, or for upgrade only, the older version must first be uninstalled (the User will be notified during the installation routine and the process will be interrupted automatically).

To remove the previous version, open the software folder in the system control panel. All of the programs installed on your system are located here. Uninstall the EE31 Configurator by clicking on the appropriate button and then install the upgrade.

3. ICONS ON THE TOOLS BAR


3.1 File

Load Save	٢
New Workstore	
Open Workspace äude A Save Workspace äude B	Analog Rela
End	

Load:	Loads a file with a saved transmitter configuration.
Save:	Saves the current transmitter configuration in a file.
New Workspace:	Opens a file for a new tree (new network).
<u>Open Workspace:</u>	Opens existing trees (networks).
Save Workspace:	Saves the current trees (networks) in an archive file.
i	<u>Note:</u> The functions "Save Workspace" and "Open Workspace" apply to the tree structure only, not to the configurations of individual transmitters! Therefore

reloaded using the command "Read All Transmitters."

3.2 Interfaces

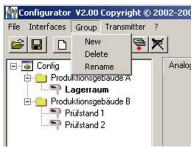
Select:

use / do not use:

Selects the serial interface (COM port) for communication with the transmitters. Following functions are available:

only the network structure is saved. Transmitters configurations must be

Marked COM ports are greyed out and deactivated for the configuration software (e.g., COM for integrated Notebook Modem).

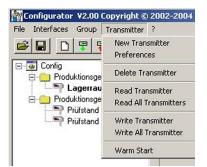


믿

Note:

A disabled interface (shaded = do not use), can be enabled by clicking on the "use" button.

3.3 Group


The icon "Group" provides the option of combining

A group may consist of transmitters used in the same application, for instance assigned to a building, or belonging to the same transmitter network.

- New: Creates a group or adds another group into an existing structure.
- Delete: Deletes groups within a tree.

Rename: Changes the name of a transmitter group.

3.4 Transmitter

		×
	-	
	V	
Add	<u> </u>	

New transmitter:

transmitters in groups.

A new transmitter is created in the tree. This procedure requires the input of a number of

Assigns a transmitter to a group.

3.2 Interfaces).

<u>Network:</u> The check box "network" must be selected when several transmitters are operated in a network (EE31 series).

the network (see label on the transmitter housing).

Interface:

parameters:

Group:

Chapter

Network address:

Configurations software

Name:

Assigns a meaningful name coresponding to the transmitter. This name is displayed in the tree under the relevant group (e.g., Clean Room).

Selects the interface for connecting the transmitter to the network.

(For information on how to set up a COM port, see Configuration Software,

Input of the network address for the EE31 transmitter for unique assignment within

Preferences:	Displays the preferences for all transmitters that have been set-up. The preferences may also be changed here.
Delete transmitter:	Deletes from the tree structure the selected transmitters, or the selected groups.
Read:	Reads and displays the configuration parameters of the selected transmitter.
Read All:	Reads the configuration for all transmitters.
i	Note: Only those parameters that have the same value for all transmitters of the network will be displayed. Other values are shaded and can not be selected or changed.
Write:	Writes the current configuration into the selected transmitter.
Write All:	Writes the current configuration to all selected transmitters.
i	Set the configuration for a transmitter, then select the appropriate network in the tree and write the configuration all transmitters of the target group using the command "Write All."
<u>Warm Start:</u>	Resets and restarts the microprocessor of the selected transmitter.

3.5 ? - Information

Version:

Displays the version number of the EE31 software currently installed and the contact information for E+E Elektronik.

"Load File" (see Configuration Software, chapter 3.1 File)

"Save File" (see Configuration Software, chapter 3.1 File)

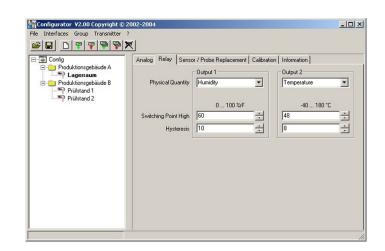
D

7

•

"Read Transmitter" (see Configuration Software, chapter 3.4 Transmitter)
"Save Transmitter" (see Configuration Software, chapter 3.4 Transmitter)
"Read All Transmitters" (see Configuration Software, chapter 3.4 Transmitter)
"Write All Transmitters" (see Configuration Software, chapter 3.4 Transmitter)
"Delete Transmitter" (see Configuration Software, chapter 3.4 Transmitter)

"New Transmitter" (see Configuration Software, chapter 3.4 Transmitter)

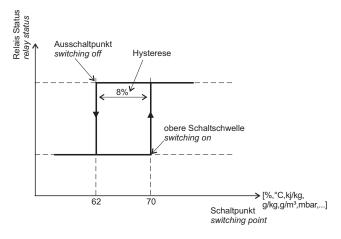

5. INDEX - INDEX CARDS

5.1 Analogue

E- 🐻 Config E- 📴 Produktionsgebäude A	Analog Relay Sens	or / Probe Replacement Calibr	ation Information
		Output 1	Output 2
🖻 🔛 Produktionsgebäude B	Range	4 · 20 mA ▼	4 - 20 mA
Prüfstand 1	Current	mĄ	mA
1 Haddid E	Voltage	V	V
		0 20 mA	0 20 mA
	Upper Limit	20	20
	Lower Limit	4	4
	Physical Quantity	Humidity 🗸	Temperature
	Priysical Quantity	-	
		0 100 %rF	-40 180 °C
	Highest Value	100	80
	Lowest Value	0	0

For easy configuration of both analogue outputs.Range:Using the drop-down input field, select either a standardized output signal (0-5V,
0-10V, 0-20mA, 4-20mA) or a user-defined current/voltage output range (upper
and lower limits may be selected as required between the limits indicated).Physical Quantity:Selects the output physical quantities.Upper / Lower Limit:Sets the desired scaleing of the output. The limits must fall within the operating
range indicated above.Units:Selects between SI or US units.

It is used to set both optional alarm outputs.


Selects the physical quantity for each alarm output.

Physical Quantity:

Switching Point High: Sets the high switching point.

Hysteresis:

Sets the switching hysteresis that should be maintained each time the signal falls below the upper switching threshold.

5.3 Sensor / Probe Replacement

In case of sensor or probe replacement, a costumer calibration has to be done.

Replacement -
Humidity Sensor (RH):1) Replace the humidity sensor by a new one
(see Hardware, chapter 8.1 Sensor Replacement).2) Run the humidity calibration (see chapter 5.4).

Replacement - Probe (RH & T): 1) Replace the humidity sensor by a new one

- (see Hardware, chapter 8.2 Probe Replacement.
- 2) Run the humidity and temperature calibration (see chapter 5.4)

5.4 Calibration

and is not supported by the software.

Config Produktionsgebäude A Produktionsgebäude B Produktionsgebäude B Prüfstand 1 Prüfstand 2	Analog Relay Sensor / Probe Replacement Calibration Information
	Temperature 1 - Point Calibration
	500 10000 mbar Air Preasure 1013
	Factory Calibration

Hardware,

performed using the EE31 software. <u>Note:</u> A two-point calibration for temperature is only possible on the circuit board

In addition to the manual calibration procedure on the circuit board (see chapter 7 "Humidity/Temperature Calibration"), new calibrations can be

1-point calibration Humidity:

Fast and easy calibration for accurate measurement results at a defined working point (humidity point).

For calibration procedure see Hardware, chapter 7. "Humidity/Temperature Calibration"

	Calib	ration	
Humidity Sensor Data			
Humidity Reading	29,3	% RH	
Reference Humidity	29.3	% BH	Save
			Cancel

1) Stabilise the probe of the desired humidity for min. 30 minutes.

- 2) Click on the Humidity "1-point calibration" button. The measured values will now appear in both input fields.
- 3) Replace the value in the input field "Humidity Reading" with the reference humidity (value of the saline solution or display of HUMOR 20).
- 4) By clicking on "Save", the humidity reading for the transmitter will be adjusted to the reference humidity.

2-point calibration Humidity:

	1 - Point	
lumidity Sensor Data		
Humidity Reading 25,5	% RH	
Reference Humidity 25,5	% RH	Save

bration Transmitter		
1.	Point	
Humidity Sensor Data		
Humidity Reading 82,6	% RH	
Reference Humidity 82,6	% RH	Save
		22:34 [mm:ss]
If you wish to interrupt the stabilisation tim		22:34 [mm:ss]
'STOP' in the box at the side and confirm 'continue'	the switch area	continue

21	Point	
umidity Sensor Data		
Humidity Reading 82,4	% RH	
Reference Humidity 82,4	% BH	Save

Calibration for accurate results over the entire measurement range.

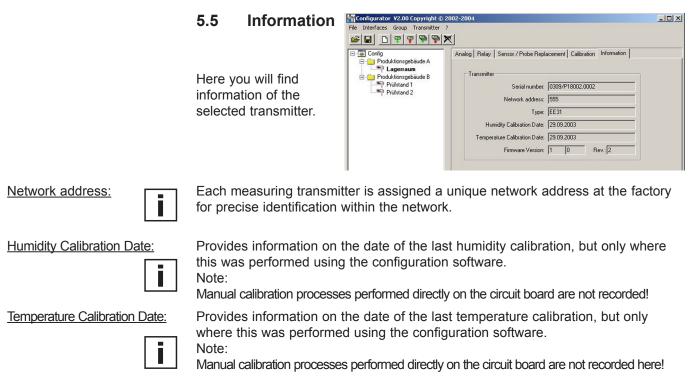
For calibration procedure, see Hardware, chapter 7 "Humidity/Temperature Calibration".

- Place the probe at the reference humidity (lower point).
 Click on the Humidity Two-Point Calibration button.
- (In a separate window, the measured values will appear in both input fields)3) Replace the value in the input field "Humidity Reading" with the reference
- humidity. (Value of the saline solution or display of HUMOR 20) 4) By clicking on "Save", the humidity reading of the transmitter will be adjusted
- to the reference humidity. Now the 30-minute stabilisation period starts.

5) Place the probe at the reference humidity (high point).

- 6) Before continuing wait till the 30-minute stabilisation period is over.
- 7) Replace the value in the input field "Humidity Reading" with the reference humidity. (Value of the saline solution or display of HUMOR 20)
- 8) By clicking on "Save", the humidity reading of the transmitter will be adjusted to the reference humidity.
- 9) The process is complete when the message "Two-point calibration successful" appears.

1-point calibration Temperature:


Calu	ration	
emperature Sensor Data		
Temperature Reading 27,04	°C	
Reference Temperature 27,04		Save

If the working range is limited to a narrow temperature range, one-point calibration will be sufficient within this working range.

- 1) Place the probe at the reference temperature and allow stabilisation for approx. 30 minutes.
- 2) Click on the Temperature 1-Point Calibration button.

The measured value will appear in both input fields. (see additional window) 3) Replace the value in the input field "Temperature Reading" with the reference

- temperature.
 A provide the value in the input field interperature reading with the reference temperature.
- 4) By clicking on "Save", the temperature reading of the transmitter will be adjusted to the reference temperature.
- 5) The process is complete when the message "Calibration Successful" appears.

Productionnumber: Version / Revision: Used to track the manufacturing data of the transmitter.

Provides information on the software version implemented in the transmitter (internal).

6. OVERVIEW

6.1 How to set-up a new transmitter?

Menu "File" --> "New Workspace" Assign a name to the file and select the location to save the file

Menu "Group" --> "New Group" Assign and add a name, then click on "Finish"

Menu " Transmitter" --> "New Transmitter" or Button "New Transmitter" Select the group for the transmitter using the pull-down menu "Group."

If the transmitter is from the EE31 series and will belong to a transmitter network, then select the box "Network" and enter the network address assigned by E+E (can be found on the housing label) in the "Network Address" field.

Specify the COM port (serial interface) of the PC / Notebook in the pull-down menu "Interface".

Enter the name for the transmitter in the "Name" field.

Complete the "New Transmitter" process by clicking on the button "Add".

6.2 How to read the configuration of a transmitter?

The current configuration of the selected transmitter can be read by clicking on the button "Read Transmitter" or by selecting "Transmitter" --> "Read Transmitter."

If the configuration is already loaded, the configuration data in the Index- index cards can be modified or adapted.

6.3 How to save the configuration in a transmitter?

A modified configuration in the Index - index cards can be saved to the selected transmitter by clicking on the button "Save Transmitter" or by selecting "Transmitter" --> "Save Transmitter."

HEAD OFFICE:

E+E ELEKTRONIK Ges.m.b.H. Langwiesen 7 A-4209 Engerwitzdorf Austria Tel: +43 7235 605 0 Fax: +43 7235 605 8 info@epluse.com www.epluse.com

SALES OFFICES:

E+E CHINA / BEIJING Tel: +86 10 84992361 info@epluse.cn

www.epluse.cn

E+E CHINA / SHANGHAI Tel: +86 21 61176129 info@epluse.cn www.epluse.cn

E+E GERMANY Tel: +49 6172 13881 0 info@epluse.de

www.epluse.de

E+E FRANCE Tel: +33 4 7472 35 82 info@epluse.fr

www.epluse.fr

E+E ITALY Tel: +39 02 2707 8636 info@epluse.it

www.epluse.it

E+E KOREA Tel: +82 31 732 6050 info@epluse.co.kr

www.epluse.co.kr

E+E USA Tel: +1 508 530 3068 office@epluse.com

www.epluse.com